Mr Daniels Maths
Algebraic Fractions Addition and Subtraction

Set 1

Set 2

Set 3

Q1) \(x + 10\over 4\) + \(x + 7\over 6\) = [ \(5 x + 44\over 12\) ]

Q1) \(10\over x+ 9\) - \(5\over x +4\) = [ \(5 x -5\over x^{2}+ 13 x +36 \)]

Q1) \(10\over x+ 4\) - \(8\over x +7\) = [ \(2 x + 38\over x^{2}+11x +28 \)]

Q2) \(x + 9\over 3\) - \(x + 10\over 9\) = [ \(2 x + 17\over 9\) ]

Q2) \(10\over x+ 6\) - \(5\over x +3\) = [ \(5 x\over x^{2}+ 9 x +18 \)]

Q2) \(10\over x+ 5\) - \(5\over x -2\) = [ \(5 x -45\over x^{2}+3x -10 \)]

Q3) \(x + 9\over 5\) + \(x + 8\over 3\) = [ \(8 x + 67\over 15\) ]

Q3) \(10\over x+ 4\) - \(6\over x +2\) = [ \(4 x -4\over x^{2}+ 6 x +8 \)]

Q3) \(10\over x+ 5\) - \(8\over x +4\) = [ \(2 x\over x^{2}+9x +20 \)]

Q4) \(x + 8\over 2\) - \(x + 9\over 5\) = [ \(3 x + 22\over 10\) ]

Q4) \(6\over x+ 2\) - \(4\over x +3\) = [ \(2 x + 10\over x^{2}+ 5 x +6 \)]

Q4) \(10\over x+ 5\) + \(6\over x +3\) = [ \(16 x + 60\over x^{2}+8x +15 \)]

Q5) \(x + 7\over 2\) + \(x + 4\over 2\) = [ \(2 x + 11\over 2\) ]

Q5) \(10\over x+ 7\) - \(7\over x +6\) = [ \(3 x + 11\over x^{2}+ 13 x +42 \)]

Q5) \(6\over x+ 4\) + \(9\over x -8\) = [ \(15 x -12\over x^{2}-4x -32 \)]

Q6) \(x + 10\over 4\) - \(x + 10\over 9\) = [ \(5 x + 50\over 36\) ]

Q6) \(10\over x+ 2\) + \(8\over x +6\) = [ \(18 x + 76\over x^{2}+ 8 x +12 \)]

Q6) \(7\over x+ 3\) - \(4\over x +2\) = [ \(3 x + 2\over x^{2}+5x +6 \)]

Q7) \(x + 9\over 2\) + \(x + 9\over 7\) = [ \(9 x + 81\over 14\) ]

Q7) \(7\over x+ 5\) - \(3\over x +2\) = [ \(4 x -1\over x^{2}+ 7 x +10 \)]

Q7) \(10\over x+ 3\) - \(5\over x -7\) = [ \(5 x -85\over x^{2}-4x -21 \)]

Q8) \(x + 9\over 3\) + \(x + 8\over 2\) = [ \(5 x + 42\over 6\) ]

Q8) \(7\over x+ 6\) + \(7\over x +4\) = [ \(14 x + 70\over x^{2}+ 10 x +24 \)]

Q8) \(8\over x+ 3\) + \(10\over x +9\) = [ \(18 x + 102\over x^{2}+12x +27 \)]

Q9) \(x + 9\over 2\) + \(x + 8\over 3\) = [ \(5 x + 43\over 6\) ]

Q9) \(9\over x+ 2\) + \(10\over x +9\) = [ \(19 x + 101\over x^{2}+ 11x +18 \)]

Q9) \(6\over x+ 5\) + \(3\over x -4\) = [ \(9 x -9\over x^{2}+x -20 \)]

Q10) \(x + 8\over 4\) - \(x + 10\over 7\) = [ \(3 x + 16\over 28\) ]

Q10) \(10\over x+ 9\) - \(8\over x +4\) = [ \(2 x -32\over x^{2}+ 13 x +36 \)]

Q10) \(9\over x+ 5\) + \(8\over x -7\) = [ \(17 x -23\over x^{2}-2x -35 \)]