Q1) \(x + 9\over 4\) - \(x + 9\over 7\) = [ \(3 x + 27\over 28\) ]
Q1) \(9\over x+ 5\) - \(4\over x +3\) = [ \(5 x + 7\over x^{2}+ 8 x +15 \)]
Q1) \(7\over x+ 2\) + \(10\over x -5\) = [ \(17 x -15\over x^{2}-3x -10 \)]
Q2) \(x + 6\over 2\) + \(x + 8\over 7\) = [ \(9 x + 58\over 14\) ]
Q2) \(10\over x+ 4\) - \(5\over x +3\) = [ \(5 x + 10\over x^{2}+ 7 x +12 \)]
Q2) \(8\over x+ 2\) + \(8\over x -7\) = [ \(16 x -40\over x^{2}-5x -14 \)]
Q3) \(x + 10\over 4\) + \(x + 9\over 4\) = [ \(2 x + 19\over 4\) ]
Q3) \(9\over x+ 4\) + \(4\over x +2\) = [ \(13 x + 34\over x^{2}+ 6 x +8 \)]
Q3) \(10\over x+ 6\) - \(3\over x -5\) = [ \(7 x -68\over x^{2}+x -30 \)]
Q4) \(x + 8\over 2\) + \(x + 9\over 7\) = [ \(9 x + 74\over 14\) ]
Q4) \(9\over x+ 2\) - \(6\over x +4\) = [ \(3 x + 24\over x^{2}+ 6 x +8 \)]
Q4) \(5\over x+ 4\) + \(6\over x +5\) = [ \(11x + 49\over x^{2}+9x +20 \)]
Q5) \(x + 5\over 4\) + \(x + 8\over 7\) = [ \(11x + 67\over 28\) ]
Q5) \(4\over x+ 3\) + \(10\over x +6\) = [ \(14 x + 54\over x^{2}+ 9 x +18 \)]
Q5) \(10\over x+ 5\) - \(6\over x -9\) = [ \(4 x -120\over x^{2}-4x -45 \)]
Q6) \(x + 8\over 7\) + \(x + 9\over 4\) = [ \(11x + 95\over 28\) ]
Q6) \(7\over x+ 3\) - \(3\over x +2\) = [ \(4 x + 5\over x^{2}+ 5 x +6 \)]
Q6) \(9\over x+ 3\) + \(6\over x +5\) = [ \(15 x + 63\over x^{2}+8x +15 \)]
Q7) \(x + 5\over 2\) - \(x + 8\over 7\) = [ \(5 x + 19\over 14\) ]
Q7) \(9\over x+ 2\) + \(8\over x +3\) = [ \(17 x + 43\over x^{2}+ 5 x +6 \)]
Q7) \(6\over x+ 4\) + \(10\over x +7\) = [ \(16 x + 82\over x^{2}+11x +28 \)]
Q8) \(x + 3\over 2\) - \(x + 9\over 8\) = [ \(3 x + 3\over 8\) ]
Q8) \(8\over x+ 6\) - \(6\over x +3\) = [ \(2 x -12\over x^{2}+ 9 x +18 \)]
Q8) \(9\over x+ 8\) + \(5\over x +4\) = [ \(14 x + 76\over x^{2}+12x +32 \)]
Q9) \(x + 7\over 4\) + \(x + 8\over 7\) = [ \(11x + 81\over 28\) ]
Q9) \(6\over x+ 3\) + \(4\over x +2\) = [ \(10 x + 24\over x^{2}+ 5 x +6 \)]
Q9) \(9\over x+ 6\) - \(6\over x +5\) = [ \(3 x + 9\over x^{2}+11x +30 \)]
Q10) \(x + 10\over 4\) + \(x + 5\over 2\) = [ \(3 x + 20\over 4\) ]
Q10) \(10\over x+ 9\) - \(8\over x +6\) = [ \(2 x -12\over x^{2}+ 15 x +54 \)]
Q10) \(6\over x+ 2\) + \(10\over x -8\) = [ \(16 x -28\over x^{2}-6x -16 \)]