Mr Daniels Maths
Bidmas

Set 1

Set 2

Set 3

Q1) 5 + 10 \( \div \) 2 = [ 10]

Q1) 4 x 10 + 3 x 2 = [ 46]

Q1) \(8 +1 \times 7+6^2 \) = [ 51]

Q2) 16 \( \div \) 2 -6 = [ 2]

Q2) (9 x 9) + (40 \( \div\) 5) = [ 89]

Q2) \(4 + 4^2 \) = [ 20]

Q3) 10 \( \div \) 2 + 9 = [ 14]

Q3) 8 x 4 - (5 x 4) = [ 12]

Q3) \(8 +3 \times 7+2^2 \) = [ 33]

Q4) 2 + 45 \( \div \) 5 = [ 11]

Q4) 8 x 9 + 4 x 5 = [ 92]

Q4) 2 x \(5+5^ 2 \) = [ 35]

Q5) 6 x 6 + 9 = [ 45]

Q5) 3 x 9 + 5 x 5 = [ 52]

Q5) \(3 + 8^2 \) = [ 67]

Q6) 9 - 32 \( \div \) 4 = [ 1]

Q6) 4 x 3 - (4 x 2) = [ 4]

Q6) 10 x \(8+6^ 2 \) = [ 116]

Q7) 30 \( \div \) 3 -5 = [ 5]

Q7) 6 x 6 - (2 x 2) = [ 32]

Q7) \(4 +5 \times 1+2^2 \) = [ 13]

Q8) 36 \( \div \) 4 -6 = [ 3]

Q8) (2 x 7) + (12 \( \div\) 6) = [ 16]

Q8) \(6 +1 \times 1+5^2 \) = [ 32]

Q9) 18 \( \div \) 3 + 3 = [ 9]

Q9) (9 x 1) + (18 \( \div\) 6) = [ 12]

Q9) \(1 + 3^2 \) = [ 10]

Q10) 9 \( \div \) 3 + 7 = [ 10]

Q10) (5 x 6) + (8 \( \div\) 2) = [ 34]

Q10) \(6 +10 \times 9+2^2 \) = [ 100]