Mr Daniels Maths
Algebraic Fractions Simplification

Set 1

Set 2

Set 3

Q1) \({x^2 -9}\over{x-3}\) = [ \(x+3\) ]

Q1) \({x-6}\over{x^2 -36}\) = [ \(1\over{x+6}\) ]

Q1) \({2x^2 +2x-24}\over{x+4}\) = [ \(2x-6\) ]

Q2) \({x-5\over{x^2 -8x+15}}\) = [ \(1\over{x-3}\) ]

Q2) \({x-2}\over{x^2 -4}\) = [ \(1\over{x+2}\) ]

Q2) \({4x^2 +17x+15}\over{x+3}\) = [ \(4x+5\) ]

Q3) \({x+3\over{x^2 +x-6}}\) = [ \(1\over{x-2}\) ]

Q3) \({x^2 -4}\over{x-2}\) = [ \(x+2\) ]

Q3) \({2x^2 -16x+24}\over{x-6}\) = [ \(2x-4\) ]

Q4) \({x^2 +x-30}\over{x-5}\) = [ \(x+6\) ]

Q4) \({x^2 -4}\over{x-2}\) = [ \(x+2\) ]

Q4) \({3x^2 +6x-9}\over{x+3}\) = [ \(3x-3\) ]

Q5) \({x-2\over{x^2 -4}}\) = [ \(1\over{x+2}\) ]

Q5) \({x+7}\over{x^2 -49}\) = [ \(1\over{x-7}\) ]

Q5) \({4x^2 +6x-4}\over{x+2}\) = [ \(4x-2\) ]

Q6) \({x+4\over{x^2 +6x+8}}\) = [ \(1\over{x+2}\) ]

Q6) \({x-2}\over{x^2 -4}\) = [ \(1\over{x+2}\) ]

Q6) \({2x^2 +3x-9}\over{x+3}\) = [ \(2x-3\) ]

Q7) \({x+3\over{x^2 +6x+9}}\) = [ \(1\over{x+3}\) ]

Q7) \({x^2 -9}\over{x-3}\) = [ \(x+3\) ]

Q7) \({4x^2 -4x-8}\over{x-2}\) = [ \(4x+4\) ]

Q8) \({x^2 +x-56}\over{x+8}\) = [ \(x-7\) ]

Q8) \({x+3}\over{x^2 -9}\) = [ \(1\over{x-3}\) ]

Q8) \({5x^2 -25x+20}\over{x-4}\) = [ \(5x-5\) ]

Q9) \({x^2 -3x-40}\over{x-8}\) = [ \(x+5\) ]

Q9) \({x^2 -4}\over{x-2}\) = [ \(x+2\) ]

Q9) \({5x^2 -20x+15}\over{x-3}\) = [ \(5x-5\) ]

Q10) \({x^2 -7x+12}\over{x-3}\) = [ \(x-4\) ]

Q10) \({x^2 -9}\over{x-3}\) = [ \(x+3\) ]

Q10) \({2x^2 -8}\over{x+2}\) = [ \(2x-4\) ]