Mr Daniels Maths
Algebraic Fractions Simplification

Set 1

Set 2

Set 3

Q1) \({x^2 -9x+20}\over{x-4}\) = [ \(x-5\) ]

Q1) \({x^2 -4}\over{x+2}\) = [ \(x-2\) ]

Q1) \({5x^2 +21x+18}\over{x+3}\) = [ \(5x+6\) ]

Q2) \({x^2 -x-6}\over{x+2}\) = [ \(x-3\) ]

Q2) \({x-3}\over{x^2 -9}\) = [ \(1\over{x+3}\) ]

Q2) \({5x^2 +4x-12}\over{x+2}\) = [ \(5x-6\) ]

Q3) \({x^2 -5x+6}\over{x-2}\) = [ \(x-3\) ]

Q3) \({x^2 -9}\over{x+3}\) = [ \(x-3\) ]

Q3) \({4x^2 +14x-30}\over{x+5}\) = [ \(4x-6\) ]

Q4) \({x^2 +x-6}\over{x-2}\) = [ \(x+3\) ]

Q4) \({x^2 -4}\over{x+2}\) = [ \(x-2\) ]

Q4) \({5x^2 -35x+30}\over{x-6}\) = [ \(5x-5\) ]

Q5) \({x-3\over{x^2 +3x-18}}\) = [ \(1\over{x+6}\) ]

Q5) \({x-2}\over{x^2 -4}\) = [ \(1\over{x+2}\) ]

Q5) \({3x^2 +21x+18}\over{x+6}\) = [ \(3x+3\) ]

Q6) \({x^2 +5x+6}\over{x+2}\) = [ \(x+3\) ]

Q6) \({x^2 -9}\over{x+3}\) = [ \(x-3\) ]

Q6) \({4x^2 +14x-30}\over{x+5}\) = [ \(4x-6\) ]

Q7) \({x-3\over{x^2 -6x+9}}\) = [ \(1\over{x-3}\) ]

Q7) \({x^2 -4}\over{x+2}\) = [ \(x-2\) ]

Q7) \({2x^2 -11x+12}\over{x-4}\) = [ \(2x-3\) ]

Q8) \({x^2 -10x+24}\over{x-6}\) = [ \(x-4\) ]

Q8) \({x^2 -4}\over{x+2}\) = [ \(x-2\) ]

Q8) \({4x^2 +10x+4}\over{x+2}\) = [ \(4x+2\) ]

Q9) \({x^2 +8x+12}\over{x+6}\) = [ \(x+2\) ]

Q9) \({x^2 -16}\over{x+4}\) = [ \(x-4\) ]

Q9) \({4x^2 +29x+30}\over{x+6}\) = [ \(4x+5\) ]

Q10) \({x^2 +7x+10}\over{x+2}\) = [ \(x+5\) ]

Q10) \({x^2 -4}\over{x-2}\) = [ \(x+2\) ]

Q10) \({4x^2 -21x-18}\over{x-6}\) = [ \(4x+3\) ]