Mr Daniels Maths
Difference of two squares

Set 1

Set 2

Set 3

Q1) Expand \((x+8)(x-8)\) = [ \(x^2 - 64\)]

Q1) Factorise \(x^2 - 100\)= [ \((x+10)(x-10)\)]

Q1) Factorise \(4x^2-16\)= [ \((2x + 4)(2x - 4)\)]

Q2) Expand \((x+1)(x-1)\) = [ \(x^2 - 1\)]

Q2) Factorise \(x^2 - 144\)= [ \((x+12)(x-12)\)]

Q2) Factorise \(36x^2-4\)= [ \((6x + 2)(6x - 2)\)]

Q3) Expand \((x+9)(x-9)\) = [ \(x^2 - 81\)]

Q3) Factorise \(x^2 - 64\)= [ \((x+8)(x-8)\)]

Q3) Factorise \(16x^2-4\)= [ \((4x + 2)(4x - 2)\)]

Q4) Expand \((x+4)(x-4)\) = [ \(x^2 - 16\)]

Q4) Factorise \(x^2 - 361\)= [ \((x+19)(x-19)\)]

Q4) Factorise \(9x^2-25\)= [ \((3x + 5)(3x - 5)\)]

Q5) Expand \((x+3)(x-3)\) = [ \(x^2 - 9\)]

Q5) Factorise \(x^2 - 36\)= [ \((x+6)(x-6)\)]

Q5) Factorise \(81x^2-81\)= [ \((9x + 9)(9x - 9)\)]

Q6) Expand \((x+5)(x-5)\) = [ \(x^2 - 25\)]

Q6) Factorise \(x^2 - 144\)= [ \((x+12)(x-12)\)]

Q6) Factorise \(49x^2-81\)= [ \((7x + 9)(7x - 9)\)]

Q7) Expand \((x+6)(x-6)\) = [ \(x^2 - 36\)]

Q7) Factorise \(x^2 - 225\)= [ \((x+15)(x-15)\)]

Q7) Factorise \(36x^2-4\)= [ \((6x + 2)(6x - 2)\)]

Q8) Expand \((x+2)(x-2)\) = [ \(x^2 - 4\)]

Q8) Factorise \(x^2 - 1\)= [ \((x+1)(x-1)\)]

Q8) Factorise \(81x^2-25\)= [ \((9x + 5)(9x - 5)\)]

Q9) Expand \((x+7)(x-7)\) = [ \(x^2 - 49\)]

Q9) Factorise \(x^2 - 64\)= [ \((x+8)(x-8)\)]

Q9) Factorise \(9x^2-49\)= [ \((3x + 7)(3x - 7)\)]

Q10) Expand \((x+6)(x-6)\) = [ \(x^2 - 36\)]

Q10) Factorise \(x^2 - 1\)= [ \((x+1)(x-1)\)]

Q10) Factorise \(9x^2-4\)= [ \((3x + 2)(3x - 2)\)]