Mr Daniels Maths
Expanding Single, Double and Triple Brackets

Set 1

Set 2

Set 3

Q1) Expand 5(w + 5) = [ 5w + 25]

Q1) Expand and simplify
\((10x + 4)(4x + 2)\)= [ \(40 x^2 + 36x + 8 \)]

Q1) Expand and simplify
\((x + 4)(x + 5)(x + 3)\)= [ \(x^3 + 12x^2 + 47x+60\)]

Q2) Expand 4(x + 5) = [ 4x + 20]

Q2) Expand and simplify
\((w + 1)(w + 1)\)= [ \(w^2 + 2w + 1\)]

Q2) Expand and simplify
\((x + 6)(x + 4)(x + 2)\)= [ \(x^3 + 12x^2 + 44x+48\)]

Q3) Expand and simplify
2(4x + 3) +8x + 4 = [ 16x + 10]

Q3) Expand and simplify
\((w + 2)(w + 3)\)= [ \(w^2 + 5w + 6\)]

Q3) Expand and simplify
\((x + 1)(x + 5)(x -2)\)= [ \(x^3 + 4x^2 -7x-10\)]

Q4) Expand and simplify
3(2y -4) +3y -7 = [ 9y -19]

Q4) Expand and simplify
\((9x + 5)(4x + 2)\)= [ \(36 x^2 + 38x + 10 \)]

Q4) Expand and simplify
\((x + 3)(x + 3)(x + 2)\)= [ \(x^3 + 8x^2 + 21x+18\)]

Q5) Expand and simplify
4(3w -3) +9w -5 = [ 21w -17]

Q5) Expand and simplify
\((z + 2)(z + 4)\)= [ \(z^2 + 6z + 8\)]

Q5) Expand and simplify
\((x + 2)(x + 5)(x -4)\)= [ \(x^3 + 3x^2 -18x-40\)]

Q6) Expand and simplify
2(5x -2) -4x + 5 = [ 6x + 1]

Q6) Expand and simplify
\((x + 1)(x + 3)\)= [ \(x^2 + 4x + 3\)]

Q6) Expand and simplify
\((x + 4)(x + 2)(x + 3)\)= [ \(x^3 + 9x^2 + 26x+24\)]

Q7) Expand 4(y + 3) = [ 4y + 12]

Q7) Expand and simplify
\((z + 4)(z + 3)\)= [ \(z^2 + 7z + 12\)]

Q7) Expand and simplify
\((x + 2)(x + 2)(x + 3)\)= [ \(x^3 + 7x^2 + 16x+12\)]