Mr Daniels Maths
Expanding Single,Double Brackets Grid Method

Set 1

Set 2

Set 3

Q1) Expand 6(x + 4) = [ 6x + 24]

Q1) Factorise the following;
27y -45 = [ 9(3y -5)]

Q1) Expand and simplify
\((x + 2)(x + 4)\equiv\) [ \(x^2 + 6x + 8\)]

Q2) Expand 3(x + 10) = [ 3x + 30]

Q2) Factorise the following;
90w -40 = [ 10(9w -4)]

Q2) Expand and simplify
\((z + 1)(z + 3)\equiv\) [ \(z^2 + 4z + 3\)]

Q3) Expand 4(x + 8) = [ 4x + 32]

Q3) Factorise the following;
49x -70 = [ 7(7x -10)]

Q3) Expand and simplify
\((x + 5)(x + 2)\equiv\) [ \(x^2 + 7x + 10\)]

Q4) Expand 3(y + 6) = [ 3y + 18]

Q4) Factorise the following;
30w + 48 = [ 6(5w + 8)]

Q4) Expand and simplify
\((y + 4)(y + 2)\equiv\) [ \(y^2 + 6y + 8\)]

Q5) Expand 2(w + 4) = [ 2w + 8]

Q5) Factorise the following;
25w -10 = [ 5(5w -2)]

Q5) Expand and simplify
\((y + 4)(y + 4)\equiv\) [ \(y^2 + 8y + 16\)]

Q6) Expand 4(x + 7) = [ 4x + 28]

Q6) Factorise the following;
64w + 24 = [ 8(8w + 3)]

Q6) Expand and simplify
\((x + 1)(x + 1)\equiv\) [ \(x^2 + 2x + 1\)]

Q7) Expand 4(x + 4) = [ 4x + 16]

Q7) Factorise the following;
56z + 16 = [ 8(7z + 2)]

Q7) Expand and simplify
\((w + 1)(w + 1)\equiv\) [ \(w^2 + 2w + 1\)]

Q8) Expand 4(x + 4) = [ 4x + 16]

Q8) Factorise the following;
25y -10 = [ 5(5y -2)]

Q8) Expand and simplify
\((w + 1)(w + 4)\equiv\) [ \(w^2 + 5w + 4\)]

Q9) Expand 3(y + 5) = [ 3y + 15]

Q9) Factorise the following;
72x + 16 = [ 8(9x + 2)]

Q9) Expand and simplify
\((z + 3)(z + 4)\equiv\) [ \(z^2 + 7z + 12\)]

Q10) Expand 8(x + 6) = [ 8x + 48]

Q10) Factorise the following;
50y -15 = [ 5(10y -3)]

Q10) Expand and simplify
\((y + 2)(y + 1)\equiv\) [ \(y^2 + 3y + 2\)]