Mr Daniels Maths
Factorising Double Brackets

Set 1

Set 2

Set 3

Q1) Factorise \(x^2 + 7x + 6\). [ \((x + 6)(x + 1)\)]

Q1) Factorise \(x^2 -2x -15\). [ \((x + 3)(x -5)\)]

Q1) Factorise the following;
\(6 x^2 + 13 x+ 6= \)
[ \((2x + 3)(3x + 2)\)]

Q2) Factorise \(x^2 + 14x + 40\). [ \((x + 4)(x + 10)\)]

Q2) Factorise \(x^2 -x -6\). [ \((x + 2)(x -3)\)]

Q2) Factorise the following;
\(8 x^2 + 22 x+ 5= \)
[ \((4x + 1)(2x + 5)\)]

Q3) Factorise \(x^2 + 12x + 36\). [ \((x + 6)(x + 6)\)]

Q3) Factorise \(x^2 + x -30\). [ \((x + 6)(x -5)\)]

Q3) Factorise the following;
\(6 x^2 + 13 x+ 6= \)
[ \((3x + 2)(2x + 3)\)]

Q4) Factorise \(x^2 + 5x + 4\). [ \((x + 1)(x + 4)\)]

Q4) Factorise \(x^2 + x -20\). [ \((x + 5)(x -4)\)]

Q4) Factorise the following;
\(6 x^2 + 19 x+ 8= \)
[ \((2x + 1)(3x + 8)\)]

Q5) Factorise \(x^2 + 11x + 24\). [ \((x + 8)(x + 3)\)]

Q5) Factorise \(x^2 -2x -8\). [ \((x + 2)(x -4)\)]

Q5) Factorise the following;
\(8 x^2 + 30 x+ 7= \)
[ \((2x + 7)(4x + 1)\)]

Q6) Factorise \(x^2 + 12x + 27\). [ \((x + 3)(x + 9)\)]

Q6) Factorise \(x^2 -5x -14\). [ \((x + 2)(x -7)\)]

Q6) Factorise the following;
\(4 x^2 + 20 x+ 9= \)
[ \((2x + 9)(2x + 1)\)]

Q7) Factorise \(x^2 + 19x + 90\). [ \((x + 10)(x + 9)\)]

Q7) Factorise \(x^2 -2x -15\). [ \((x + 3)(x -5)\)]

Q7) Factorise the following;
\(8 x^2 + 30 x+ 7= \)
[ \((4x + 1)(2x + 7)\)]

Q8) Factorise \(x^2 + 9x + 20\). [ \((x + 4)(x + 5)\)]

Q8) Factorise \(x^2 -x -6\). [ \((x + 2)(x -3)\)]

Q8) Factorise the following;
\(8 x^2 + 18 x+ 7= \)
[ \((2x + 1)(4x + 7)\)]

Q9) Factorise \(x^2 + 9x + 14\). [ \((x + 7)(x + 2)\)]

Q9) Factorise \(x^2 -x -12\). [ \((x + 3)(x -4)\)]

Q9) Factorise the following;
\(6 x^2 + 7 x+ 2= \)
[ \((3x + 2)(2x + 1)\)]

Q10) Factorise \(x^2 + 5x + 4\). [ \((x + 4)(x + 1)\)]

Q10) Factorise \(x^2 -2x -8\). [ \((x + 2)(x -4)\)]

Q10) Factorise the following;
\(9 x^2 + 12 x+ 4= \)
[ \((3x + 2)(3x + 2)\)]