Mr Daniels Maths
Factorising Double Brackets

Set 1

Set 2

Set 3

Q1) Factorise \(x^2 + 8x + 15\). [ \((x + 3)(x + 5)\)]

Q1) Factorise \(x^2 + 3x -10\). [ \((x + 5)(x -2)\)]

Q1) Factorise the following;
\(4 x^2 + 12 x+ 5= \)
[ \((2x + 1)(2x + 5)\)]

Q2) Factorise \(x^2 + 18x + 80\). [ \((x + 8)(x + 10)\)]

Q2) Factorise \(x^2 -5x -14\). [ \((x + 2)(x -7)\)]

Q2) Factorise the following;
\(9 x^2 + 12 x+ 4= \)
[ \((3x + 2)(3x + 2)\)]

Q3) Factorise \(x^2 + 16x + 60\). [ \((x + 10)(x + 6)\)]

Q3) Factorise \(x^2 + 5x -24\). [ \((x + 8)(x -3)\)]

Q3) Factorise the following;
\(6 x^2 + 23 x+ 7= \)
[ \((2x + 7)(3x + 1)\)]

Q4) Factorise \(x^2 + 11x + 18\). [ \((x + 9)(x + 2)\)]

Q4) Factorise \(x^2 + x -42\). [ \((x + 7)(x -6)\)]

Q4) Factorise the following;
\(8 x^2 + 22 x+ 5= \)
[ \((2x + 5)(4x + 1)\)]

Q5) Factorise \(x^2 + 14x + 48\). [ \((x + 8)(x + 6)\)]

Q5) Factorise \(x^2 + x -30\). [ \((x + 6)(x -5)\)]

Q5) Factorise the following;
\(9 x^2 + 9 x+ 2= \)
[ \((3x + 1)(3x + 2)\)]

Q6) Factorise \(x^2 + 10x + 24\). [ \((x + 6)(x + 4)\)]

Q6) Factorise \(x^2 -x -6\). [ \((x + 2)(x -3)\)]

Q6) Factorise the following;
\(6 x^2 + 7 x+ 2= \)
[ \((2x + 1)(3x + 2)\)]

Q7) Factorise \(x^2 + 14x + 45\). [ \((x + 5)(x + 9)\)]

Q7) Factorise \(x^2 -3x -10\). [ \((x + 2)(x -5)\)]

Q7) Factorise the following;
\(6 x^2 + 19 x+ 8= \)
[ \((2x + 1)(3x + 8)\)]

Q8) Factorise \(x^2 + 13x + 36\). [ \((x + 4)(x + 9)\)]

Q8) Factorise \(x^2 -x -6\). [ \((x + 2)(x -3)\)]

Q8) Factorise the following;
\(6 x^2 + 11x+ 4= \)
[ \((2x + 1)(3x + 4)\)]

Q9) Factorise \(x^2 + 8x + 12\). [ \((x + 2)(x + 6)\)]

Q9) Factorise \(x^2 + 2x -8\). [ \((x + 4)(x -2)\)]

Q9) Factorise the following;
\(6 x^2 + 13 x+ 6= \)
[ \((2x + 3)(3x + 2)\)]

Q10) Factorise \(x^2 + 12x + 27\). [ \((x + 9)(x + 3)\)]

Q10) Factorise \(x^2 -x -6\). [ \((x + 2)(x -3)\)]

Q10) Factorise the following;
\(9 x^2 + 9 x+ 2= \)
[ \((3x + 1)(3x + 2)\)]