Mr Daniels Maths
Factorising Double Brackets 2

Set 1

Set 2

Set 3

Q1) Factorise \(x^2 -2x -15\). [ \((x + 3)(x -5)\)]

Q1) Factorise the following;
\(16x^2 -49 =\) [ \((4x -7)(4x + 7)\)]

Q1) Factorise the following;
\(9 x^2 + 15 x+ 4= \)
[ \((3x + 1)(3x + 4)\)]

Q2) Factorise \(x^2 + x -6\). [ \((x + 3)(x -2)\)]

Q2) Factorise the following;
\(x^2 -9 =\) [ \((x -3)(x + 3)\)]

Q2) Factorise the following;
\(6 x^2 + 13 x+ 6= \)
[ \((2x + 3)(3x + 2)\)]

Q3) Factorise \(x^2 + x -20\). [ \((x + 5)(x -4)\)]

Q3) Factorise the following;
\(36x^2 -225 =\) [ \((6x + 15)(6x -15)\)]

Q3) Factorise the following;
\(8 x^2 + 14 x+ 5= \)
[ \((4x + 5)(2x + 1)\)]

Q4) Factorise \(x^2 -2x -63\). [ \((x + 7)(x -9)\)]

Q4) Factorise the following;
\(64x^2 -121 =\) [ \((8x -11)(8x + 11)\)]

Q4) Factorise the following;
\(9 x^2 + 9 x+ 2= \)
[ \((3x + 1)(3x + 2)\)]

Q5) Factorise \(x^2 + 3x -10\). [ \((x + 5)(x -2)\)]

Q5) Factorise the following;
\(x^2 -144 =\) [ \((x + 12)(x -12)\)]

Q5) Factorise the following;
\(9 x^2 + 15 x+ 4= \)
[ \((3x + 4)(3x + 1)\)]

Q6) Factorise \(x^2 + 4x -12\). [ \((x + 6)(x -2)\)]

Q6) Factorise the following;
\(4x^2 -144 =\) [ \((2x -12)(2x + 12)\)]

Q6) Factorise the following;
\(6 x^2 + 7 x+ 2= \)
[ \((3x + 2)(2x + 1)\)]

Q7) Factorise \(x^2 + 3x -10\). [ \((x + 5)(x -2)\)]

Q7) Factorise the following;
\(x^2 -9 =\) [ \((x + 3)(x -3)\)]

Q7) Factorise the following;
\(4 x^2 + 12 x+ 5= \)
[ \((2x + 1)(2x + 5)\)]

Q8) Factorise \(x^2 -2x -8\). [ \((x + 2)(x -4)\)]

Q8) Factorise the following;
\(x^2 -225 =\) [ \((x + 15)(x -15)\)]

Q8) Factorise the following;
\(6 x^2 + 13 x+ 5= \)
[ \((2x + 1)(3x + 5)\)]

Q9) Factorise \(x^2 + 3x -10\). [ \((x + 5)(x -2)\)]

Q9) Factorise the following;
\(x^2 -25 =\) [ \((x + 5)(x -5)\)]

Q9) Factorise the following;
\(6 x^2 + 13 x+ 6= \)
[ \((2x + 3)(3x + 2)\)]

Q10) Factorise \(x^2 -2x -8\). [ \((x + 2)(x -4)\)]

Q10) Factorise the following;
\(x^2 -64 =\) [ \((x -8)(x + 8)\)]

Q10) Factorise the following;
\(4 x^2 + 12 x+ 5= \)
[ \((2x + 5)(2x + 1)\)]