Mr Daniels Maths
Factorising Double Brackets Grid

Set 1

Set 2

Set 3

Q1) Expand and simplify
\((z + 3)(z + 4)\equiv\) [ \(z^2 + 7z + 12\)]

Q1) Factorise \(x^2 + 2x + 1\). [ \((x + 1)(x + 1)\)]

Q1) Factorise \(x^2 -x -6\). [ \((x + 2)(x -3)\)]

Q2) Expand and simplify
\((w + 2)(w + 5)\equiv\) [ \(w^2 + 7w + 10\)]

Q2) Factorise \(x^2 + 6x + 8\). [ \((x + 4)(x + 2)\)]

Q2) Factorise \(x^2 -x -6\). [ \((x + 2)(x -3)\)]

Q3) Expand and simplify
\((x + 4)(x + 5)\equiv\) [ \(x^2 + 9x + 20\)]

Q3) Factorise \(x^2 + 7x + 12\). [ \((x + 4)(x + 3)\)]

Q3) Factorise \(x^2 -x -6\). [ \((x + 2)(x -3)\)]

Q4) Expand and simplify
\((x + 2)(x + 4)\equiv\) [ \(x^2 + 6x + 8\)]

Q4) Factorise \(x^2 + 4x + 3\). [ \((x + 3)(x + 1)\)]

Q4) Factorise \(x^2 -x -6\). [ \((x + 2)(x -3)\)]

Q5) Expand and simplify
\((x + 1)(x + 1)\equiv\) [ \(x^2 + 2x + 1\)]

Q5) Factorise \(x^2 + 6x + 9\). [ \((x + 3)(x + 3)\)]

Q5) Factorise \(x^2 -2x -8\). [ \((x + 2)(x -4)\)]

Q6) Expand and simplify
\((x + 2)(x + 2)\equiv\) [ \(x^2 + 4x + 4\)]

Q6) Factorise \(x^2 + 9x + 20\). [ \((x + 4)(x + 5)\)]

Q6) Factorise \(x^2 -x -12\). [ \((x + 3)(x -4)\)]

Q7) Expand and simplify
\((w + 1)(w + 2)\equiv\) [ \(w^2 + 3w + 2\)]

Q7) Factorise \(x^2 + 5x + 4\). [ \((x + 4)(x + 1)\)]

Q7) Factorise \(x^2 + x -6\). [ \((x + 3)(x -2)\)]

Q8) Expand and simplify
\((w + 4)(w + 4)\equiv\) [ \(w^2 + 8w + 16\)]

Q8) Factorise \(x^2 + 7x + 12\). [ \((x + 3)(x + 4)\)]

Q8) Factorise \(x^2 -x -6\). [ \((x + 2)(x -3)\)]

Q9) Expand and simplify
\((z + 2)(z + 5)\equiv\) [ \(z^2 + 7z + 10\)]

Q9) Factorise \(x^2 + 9x + 20\). [ \((x + 4)(x + 5)\)]

Q9) Factorise \(x^2 -2x -15\). [ \((x + 3)(x -5)\)]

Q10) Expand and simplify
\((z + 4)(z + 3)\equiv\) [ \(z^2 + 7z + 12\)]

Q10) Factorise \(x^2 + 7x + 10\). [ \((x + 2)(x + 5)\)]

Q10) Factorise \(x^2 + 2x -15\). [ \((x + 5)(x -3)\)]