Q1) Expand and simplify
\((y + 4)(y + 4)\equiv\) [ \(y^2 + 8y + 16\)]
Q1) Factorise \(x^2 + 6x + 9\). [ \((x + 3)(x + 3)\)]
Q1) Factorise \(x^2 -x -12\). [ \((x + 3)(x -4)\)]
Q2) Expand and simplify
\((z + 1)(z + 3)\equiv\) [ \(z^2 + 4z + 3\)]
Q2) Factorise \(x^2 + 7x + 10\). [ \((x + 5)(x + 2)\)]
Q2) Factorise \(x^2 -x -6\). [ \((x + 2)(x -3)\)]
Q3) Expand and simplify
\((x + 2)(x + 1)\equiv\) [ \(x^2 + 3x + 2\)]
Q3) Factorise \(x^2 + 6x + 9\). [ \((x + 3)(x + 3)\)]
Q3) Factorise \(x^2 -x -6\). [ \((x + 2)(x -3)\)]
Q4) Expand and simplify
\((w + 5)(w + 3)\equiv\) [ \(w^2 + 8w + 15\)]
Q4) Factorise \(x^2 + 4x + 3\). [ \((x + 1)(x + 3)\)]
Q4) Factorise \(x^2 -x -6\). [ \((x + 2)(x -3)\)]
Q5) Expand and simplify
\((y + 5)(y + 3)\equiv\) [ \(y^2 + 8y + 15\)]
Q5) Factorise \(x^2 + 3x + 2\). [ \((x + 1)(x + 2)\)]
Q5) Factorise \(x^2 -x -6\). [ \((x + 2)(x -3)\)]
Q6) Expand and simplify
\((y + 2)(y + 2)\equiv\) [ \(y^2 + 4y + 4\)]
Q6) Factorise \(x^2 + 8x + 15\). [ \((x + 5)(x + 3)\)]
Q6) Factorise \(x^2 -2x -8\). [ \((x + 2)(x -4)\)]
Q7) Expand and simplify
\((z + 2)(z + 2)\equiv\) [ \(z^2 + 4z + 4\)]
Q7) Factorise \(x^2 + 5x + 4\). [ \((x + 1)(x + 4)\)]
Q7) Factorise \(x^2 -x -6\). [ \((x + 2)(x -3)\)]
Q8) Expand and simplify
\((z + 2)(z + 5)\equiv\) [ \(z^2 + 7z + 10\)]
Q8) Factorise \(x^2 + 5x + 4\). [ \((x + 4)(x + 1)\)]
Q8) Factorise \(x^2 + x -6\). [ \((x + 3)(x -2)\)]
Q9) Expand and simplify
\((y + 4)(y + 4)\equiv\) [ \(y^2 + 8y + 16\)]
Q9) Factorise \(x^2 + 8x + 16\). [ \((x + 4)(x + 4)\)]
Q9) Factorise \(x^2 -2x -8\). [ \((x + 2)(x -4)\)]
Q10) Expand and simplify
\((x + 1)(x + 1)\equiv\) [ \(x^2 + 2x + 1\)]
Q10) Factorise \(x^2 + 8x + 15\). [ \((x + 3)(x + 5)\)]
Q10) Factorise \(x^2 + x -6\). [ \((x + 3)(x -2)\)]