Mr Daniels Maths
Factorising Double Brackets Hard

Set 1

Set 2

Set 3

Q1) Factorise \(x^2 + 9x + 20\). [ \((x + 4)(x + 5)\)]

Q1) Factorise the following;
\(8 x^2 + 10 x+ 3= \)
[ \((2x + 1)(4x + 3)\)]

Q1) Factorise the following;
\(6 x^2 + x-12= \)
[ \((2x + 3)(3x -4)\)]

Q2) Factorise \(x^2 + 15x + 54\). [ \((x + 9)(x + 6)\)]

Q2) Factorise the following;
\(4 x^2 + 8 x+ 3= \)
[ \((2x + 1)(2x + 3)\)]

Q2) Factorise the following;
\(9 x^2 -6 x-8= \)
[ \((3x + 2)(3x -4)\)]

Q3) Factorise \(x^2 + 14x + 40\). [ \((x + 4)(x + 10)\)]

Q3) Factorise the following;
\(8 x^2 + 22 x+ 5= \)
[ \((4x + 1)(2x + 5)\)]

Q3) Factorise the following;
\(6 x^2 -11x-10= \)
[ \((3x + 2)(2x -5)\)]

Q4) Factorise \(x^2 + 11x + 10\). [ \((x + 10)(x + 1)\)]

Q4) Factorise the following;
\(8 x^2 + 10 x+ 3= \)
[ \((2x + 1)(4x + 3)\)]

Q4) Factorise the following;
\(6 x^2 + 5 x-6= \)
[ \((2x + 3)(3x -2)\)]

Q5) Factorise \(x^2 + 12x + 36\). [ \((x + 6)(x + 6)\)]

Q5) Factorise the following;
\(9 x^2 + 12 x+ 4= \)
[ \((3x + 2)(3x + 2)\)]

Q5) Factorise the following;
\(4 x^2 + 4 x-15= \)
[ \((2x + 5)(2x -3)\)]

Q6) Factorise \(x^2 + 11x + 30\). [ \((x + 5)(x + 6)\)]

Q6) Factorise the following;
\(6 x^2 + 13 x+ 6= \)
[ \((2x + 3)(3x + 2)\)]

Q6) Factorise the following;
\(9 x^2 + 6 x-8= \)
[ \((3x + 4)(3x -2)\)]

Q7) Factorise \(x^2 + 18x + 80\). [ \((x + 8)(x + 10)\)]

Q7) Factorise the following;
\(6 x^2 + 11x+ 3= \)
[ \((3x + 1)(2x + 3)\)]

Q7) Factorise the following;
\(6 x^2 -5 x-6= \)
[ \((3x + 2)(2x -3)\)]

Q8) Factorise \(x^2 + 13x + 42\). [ \((x + 7)(x + 6)\)]

Q8) Factorise the following;
\(9 x^2 + 9 x+ 2= \)
[ \((3x + 1)(3x + 2)\)]

Q8) Factorise the following;
\(6 x^2 + 11x-10= \)
[ \((2x + 5)(3x -2)\)]

Q9) Factorise \(x^2 + 7x + 6\). [ \((x + 1)(x + 6)\)]

Q9) Factorise the following;
\(6 x^2 + 7 x+ 2= \)
[ \((2x + 1)(3x + 2)\)]

Q9) Factorise the following;
\(6 x^2 -11x-10= \)
[ \((3x + 2)(2x -5)\)]

Q10) Factorise \(x^2 + 3x + 2\). [ \((x + 2)(x + 1)\)]

Q10) Factorise the following;
\(6 x^2 + 5 x+ 1= \)
[ \((3x + 1)(2x + 1)\)]

Q10) Factorise the following;
\(9 x^2 -21x+ 10= \)
[ \((3x -2)(3x -5)\)]