Mr Daniels Maths
Fraction Addition

Set 1

Set 2

Set 3

Q1) \(\frac{1}{3}\) + \(\frac{1}{4}\) = [ \(\frac{7}{12}\)]

Q1) \(\frac{3}{10}\) + \(\frac{1}{5}\) = [ \(\frac{1}{2}\)]

Q1) 4\(\frac{1}{2}\) + \(\frac{7}{15}\) = [ 4\(\frac{29}{30}\)]

Q2) \(\frac{3}{7}\) + \(\frac{1}{5}\) = [ \(\frac{22}{35}\)]

Q2) \(\frac{1}{4}\) + \(\frac{4}{7}\) = [ \(\frac{23}{28}\)]

Q2) \(\frac{3}{8}\) + \(\frac{2}{3}\) +1= [ 2\(\frac{1}{24}\)]

Q3) \(\frac{4}{9}\) + \(\frac{1}{2}\) = [ \(\frac{17}{18}\)]

Q3) \(\frac{1}{2}\) + \(\frac{1}{5}\) = [ \(\frac{7}{10}\)]

Q3) \(\frac{4}{5}\) + \(\frac{6}{7}\) +3\(\frac{1}{2}\)= [ 5\(\frac{11}{70}\)]

Q4) \(\frac{2}{5}\) + \(\frac{5}{9}\) = [ \(\frac{43}{45}\)]

Q4) \(\frac{1}{4}\) + \(\frac{1}{2}\) = [ \(\frac{3}{4}\)]

Q4) 1\(\frac{4}{5}\) + 4\(\frac{1}{2}\) = [ 6\(\frac{3}{10}\)]

Q5) \(\frac{5}{8}\) + \(\frac{1}{3}\) = [ \(\frac{23}{24}\)]

Q5) \(\frac{2}{7}\) + \(\frac{2}{5}\) = [ \(\frac{24}{35}\)]

Q5) \(\frac{3}{5}\) + \(\frac{2}{5}\) +2\(\frac{1}{3}\)= [ 3\(\frac{1}{3}\)]

Q6) \(\frac{2}{7}\) + \(\frac{4}{7}\) = [ \(\frac{6}{7}\)]

Q6) \(\frac{1}{3}\) + \(\frac{1}{2}\) = [ \(\frac{5}{6}\)]

Q6) 1\(\frac{1}{3}\) + 2\(\frac{1}{2}\) = [ 3\(\frac{5}{6}\)]

Q7) \(\frac{2}{5}\) + \(\frac{1}{2}\) = [ \(\frac{9}{10}\)]

Q7) \(\frac{2}{9}\) + \(\frac{3}{8}\) = [ \(\frac{43}{72}\)]

Q7) 2\(\frac{1}{4}\) + 1\(\frac{2}{3}\) = [ 3\(\frac{11}{12}\)]

Q8) \(\frac{2}{5}\) + \(\frac{2}{5}\) = [ \(\frac{4}{5}\)]

Q8) \(\frac{3}{10}\) + \(\frac{3}{5}\) = [ \(\frac{9}{10}\)]

Q8) \(\frac{2}{3}\) + \(\frac{2}{5}\) +3\(\frac{1}{3}\)= [ 4\(\frac{2}{5}\)]

Q9) \(\frac{1}{5}\) + \(\frac{7}{9}\) = [ \(\frac{44}{45}\)]

Q9) \(\frac{2}{3}\) + \(\frac{2}{7}\) = [ \(\frac{20}{21}\)]

Q9) 2\(\frac{1}{4}\) + \(\frac{8}{9}\) = [ 3\(\frac{5}{36}\)]

Q10) \(\frac{2}{9}\) + \(\frac{1}{5}\) = [ \(\frac{19}{45}\)]

Q10) \(\frac{2}{5}\) + \(\frac{4}{9}\) = [ \(\frac{38}{45}\)]

Q10) 1\(\frac{1}{2}\) + \(\frac{8}{19}\) = [ 1\(\frac{35}{38}\)]