Mr Daniels Maths
Fraction Addition

Set 1

Set 2

Set 3

Q1) \(\frac{3}{4}\) + \(\frac{1}{5}\) = [ \(\frac{19}{20}\)]

Q1) \(\frac{3}{10}\) + \(\frac{1}{3}\) = [ \(\frac{19}{30}\)]

Q1) 1\(\frac{1}{6}\) + 1\(\frac{1}{3}\) = [ 2\(\frac{1}{2}\)]

Q2) \(\frac{1}{4}\) + \(\frac{5}{9}\) = [ \(\frac{29}{36}\)]

Q2) \(\frac{3}{10}\) + \(\frac{1}{2}\) = [ \(\frac{4}{5}\)]

Q2) \(\frac{4}{9}\) + \(\frac{1}{2}\) +4= [ 4\(\frac{17}{18}\)]

Q3) \(\frac{2}{5}\) + \(\frac{1}{5}\) = [ \(\frac{3}{5}\)]

Q3) \(\frac{1}{5}\) + \(\frac{3}{4}\) = [ \(\frac{19}{20}\)]

Q3) 2\(\frac{2}{3}\) + \(\frac{1}{9}\) = [ 2\(\frac{7}{9}\)]

Q4) \(\frac{1}{2}\) + \(\frac{3}{7}\) = [ \(\frac{13}{14}\)]

Q4) \(\frac{1}{2}\) + \(\frac{1}{3}\) = [ \(\frac{5}{6}\)]

Q4) 1\(\frac{1}{2}\) + \(\frac{9}{20}\) = [ 1\(\frac{19}{20}\)]

Q5) \(\frac{5}{9}\) + \(\frac{1}{3}\) = [ \(\frac{8}{9}\)]

Q5) \(\frac{1}{2}\) + \(\frac{3}{10}\) = [ \(\frac{4}{5}\)]

Q5) \(\frac{5}{8}\) + \(\frac{5}{6}\) +1= [ 2\(\frac{11}{24}\)]

Q6) \(\frac{1}{4}\) + \(\frac{1}{3}\) = [ \(\frac{7}{12}\)]

Q6) \(\frac{1}{5}\) + \(\frac{1}{4}\) = [ \(\frac{9}{20}\)]

Q6) \(\frac{2}{3}\) + \(\frac{1}{2}\) +4= [ 5\(\frac{1}{6}\)]

Q7) \(\frac{1}{5}\) + \(\frac{1}{3}\) = [ \(\frac{8}{15}\)]

Q7) \(\frac{1}{3}\) + \(\frac{3}{7}\) = [ \(\frac{16}{21}\)]

Q7) \(\frac{6}{7}\) + \(\frac{6}{7}\) +1\(\frac{1}{2}\)= [ 3\(\frac{3}{14}\)]

Q8) \(\frac{2}{7}\) + \(\frac{5}{9}\) = [ \(\frac{53}{63}\)]

Q8) \(\frac{1}{2}\) + \(\frac{1}{4}\) = [ \(\frac{3}{4}\)]

Q8) 1\(\frac{1}{7}\) + 1\(\frac{2}{3}\) = [ 2\(\frac{17}{21}\)]

Q9) \(\frac{1}{4}\) + \(\frac{1}{5}\) = [ \(\frac{9}{20}\)]

Q9) \(\frac{1}{2}\) + \(\frac{1}{4}\) = [ \(\frac{3}{4}\)]

Q9) \(\frac{1}{2}\) + \(\frac{3}{4}\) +1= [ 2\(\frac{1}{4}\)]

Q10) \(\frac{5}{8}\) + \(\frac{1}{3}\) = [ \(\frac{23}{24}\)]

Q10) \(\frac{2}{9}\) + \(\frac{3}{7}\) = [ \(\frac{41}{63}\)]

Q10) 1\(\frac{1}{2}\) + 2\(\frac{2}{3}\) = [ 4\(\frac{1}{6}\)]