Q1) \(\frac{1}{3}\) + \(\frac{1}{4}\) = [ \(\frac{7}{12}\)]
Q1) \(\frac{3}{10}\) + \(\frac{1}{5}\) = [ \(\frac{1}{2}\)]
Q1) 4\(\frac{1}{2}\) + \(\frac{7}{15}\) = [ 4\(\frac{29}{30}\)]
Q2) \(\frac{3}{7}\) + \(\frac{1}{5}\) = [ \(\frac{22}{35}\)]
Q2) \(\frac{1}{4}\) + \(\frac{4}{7}\) = [ \(\frac{23}{28}\)]
Q2) \(\frac{3}{8}\) + \(\frac{2}{3}\) +1= [ 2\(\frac{1}{24}\)]
Q3) \(\frac{4}{9}\) + \(\frac{1}{2}\) = [ \(\frac{17}{18}\)]
Q3) \(\frac{1}{2}\) + \(\frac{1}{5}\) = [ \(\frac{7}{10}\)]
Q3) \(\frac{4}{5}\) + \(\frac{6}{7}\) +3\(\frac{1}{2}\)= [ 5\(\frac{11}{70}\)]
Q4) \(\frac{2}{5}\) + \(\frac{5}{9}\) = [ \(\frac{43}{45}\)]
Q4) \(\frac{1}{4}\) + \(\frac{1}{2}\) = [ \(\frac{3}{4}\)]
Q4) 1\(\frac{4}{5}\) + 4\(\frac{1}{2}\) = [ 6\(\frac{3}{10}\)]
Q5) \(\frac{5}{8}\) + \(\frac{1}{3}\) = [ \(\frac{23}{24}\)]
Q5) \(\frac{2}{7}\) + \(\frac{2}{5}\) = [ \(\frac{24}{35}\)]
Q5) \(\frac{3}{5}\) + \(\frac{2}{5}\) +2\(\frac{1}{3}\)= [ 3\(\frac{1}{3}\)]
Q6) \(\frac{2}{7}\) + \(\frac{4}{7}\) = [ \(\frac{6}{7}\)]
Q6) \(\frac{1}{3}\) + \(\frac{1}{2}\) = [ \(\frac{5}{6}\)]
Q6) 1\(\frac{1}{3}\) + 2\(\frac{1}{2}\) = [ 3\(\frac{5}{6}\)]
Q7) \(\frac{2}{5}\) + \(\frac{1}{2}\) = [ \(\frac{9}{10}\)]
Q7) \(\frac{2}{9}\) + \(\frac{3}{8}\) = [ \(\frac{43}{72}\)]
Q7) 2\(\frac{1}{4}\) + 1\(\frac{2}{3}\) = [ 3\(\frac{11}{12}\)]
Q8) \(\frac{2}{5}\) + \(\frac{2}{5}\) = [ \(\frac{4}{5}\)]
Q8) \(\frac{3}{10}\) + \(\frac{3}{5}\) = [ \(\frac{9}{10}\)]
Q8) \(\frac{2}{3}\) + \(\frac{2}{5}\) +3\(\frac{1}{3}\)= [ 4\(\frac{2}{5}\)]
Q9) \(\frac{1}{5}\) + \(\frac{7}{9}\) = [ \(\frac{44}{45}\)]
Q9) \(\frac{2}{3}\) + \(\frac{2}{7}\) = [ \(\frac{20}{21}\)]
Q9) 2\(\frac{1}{4}\) + \(\frac{8}{9}\) = [ 3\(\frac{5}{36}\)]
Q10) \(\frac{2}{9}\) + \(\frac{1}{5}\) = [ \(\frac{19}{45}\)]
Q10) \(\frac{2}{5}\) + \(\frac{4}{9}\) = [ \(\frac{38}{45}\)]
Q10) 1\(\frac{1}{2}\) + \(\frac{8}{19}\) = [ 1\(\frac{35}{38}\)]