Mr Daniels Maths
Fraction Addition Part 1

Set 1

Set 2

Set 3

Q1) \(9\over12\) + \(2\over12\) = \({ }\over12\) [ \(11\over12\)]

Q1) \(5\over8\) + \(2\over8\) = [ \(7\over8\)]

Q1) \(4\over15\) + \(3\over15\) + \(2\over15\) = [ \(9\over15\)]

Q2) \(3\over11\) + \(3\over11\) = \({ }\over11\) [ \(6\over11\)]

Q2) \(2\over8\) + \(5\over8\) = [ \(7\over8\)]

Q2) \(6\over15\) + \(2\over15\) + \(5\over15\) = [ \(13\over15\)]

Q3) \(2\over11\) + \(2\over11\) = \({ }\over11\) [ \(4\over11\)]

Q3) \(3\over10\) + \(3\over10\) = [ \(6\over10\)]

Q3) \(2\over10\) + \(3\over10\) + \(2\over10\) = [ \(7\over10\)]

Q4) \(2\over10\) + \(3\over10\) = \({ }\over10\) [ \(5\over10\)]

Q4) \(2\over8\) + \(2\over8\) = [ \(4\over8\)]

Q4) \(3\over14\) + \(2\over14\) + \(5\over14\) = [ \(10\over14\)]

Q5) \(3\over8\) + \(3\over8\) = \({ }\over8\) [ \(6\over8\)]

Q5) \(3\over12\) + \(5\over12\) = [ \(8\over12\)]

Q5) \(4\over12\) + \(2\over12\) + \(2\over12\) = [ \(8\over12\)]

Q6) \(4\over9\) + \(2\over9\) = \({ }\over9\) [ \(6\over9\)]

Q6) \(4\over9\) + \(2\over9\) = [ \(6\over9\)]

Q6) \(4\over15\) + \(2\over15\) + \(3\over15\) = [ \(9\over15\)]

Q7) \(3\over9\) + \(4\over9\) = \({ }\over9\) [ \(7\over9\)]

Q7) \(4\over10\) + \(5\over10\) = [ \(9\over10\)]

Q7) \(3\over15\) + \(5\over15\) + \(5\over15\) = [ \(13\over15\)]

Q8) \(6\over11\) + \(4\over11\) = \({ }\over11\) [ \(10\over11\)]

Q8) \(3\over12\) + \(3\over12\) = [ \(6\over12\)]

Q8) \(3\over10\) + \(3\over10\) + \(3\over10\) = [ \(9\over10\)]

Q9) \(4\over11\) + \(5\over11\) = \({ }\over11\) [ \(9\over11\)]

Q9) \(2\over11\) + \(2\over11\) = [ \(4\over11\)]

Q9) \(3\over13\) + \(3\over13\) + \(2\over13\) = [ \(8\over13\)]

Q10) \(5\over11\) + \(5\over11\) = \({ }\over11\) [ \(10\over11\)]

Q10) \(3\over10\) + \(2\over10\) = [ \(5\over10\)]

Q10) \(6\over12\) + \(2\over12\) + \(3\over12\) = [ \(11\over12\)]