Mr Daniels Maths
Fraction Addition Part 1

Set 1

Set 2

Set 3

Q1) \(7\over10\) + \(2\over10\) = \({ }\over10\) [ \(9\over10\)]

Q1) \(6\over12\) + \(4\over12\) = [ \(10\over12\)]

Q1) \(5\over15\) + \(4\over15\) + \(5\over15\) = [ \(14\over15\)]

Q2) \(4\over10\) + \(5\over10\) = \({ }\over10\) [ \(9\over10\)]

Q2) \(4\over7\) + \(2\over7\) = [ \(6\over7\)]

Q2) \(6\over13\) + \(3\over13\) + \(3\over13\) = [ \(12\over13\)]

Q3) \(3\over8\) + \(2\over8\) = \({ }\over8\) [ \(5\over8\)]

Q3) \(3\over6\) + \(2\over6\) = [ \(5\over6\)]

Q3) \(3\over14\) + \(2\over14\) + \(2\over14\) = [ \(7\over14\)]

Q4) \(6\over12\) + \(5\over12\) = \({ }\over12\) [ \(11\over12\)]

Q4) \(4\over10\) + \(5\over10\) = [ \(9\over10\)]

Q4) \(2\over10\) + \(2\over10\) + \(2\over10\) = [ \(6\over10\)]

Q5) \(3\over10\) + \(3\over10\) = \({ }\over10\) [ \(6\over10\)]

Q5) \(2\over9\) + \(4\over9\) = [ \(6\over9\)]

Q5) \(2\over12\) + \(2\over12\) + \(4\over12\) = [ \(8\over12\)]

Q6) \(3\over10\) + \(3\over10\) = \({ }\over10\) [ \(6\over10\)]

Q6) \(7\over12\) + \(4\over12\) = [ \(11\over12\)]

Q6) \(3\over13\) + \(4\over13\) + \(2\over13\) = [ \(9\over13\)]

Q7) \(7\over12\) + \(2\over12\) = \({ }\over12\) [ \(9\over12\)]

Q7) \(6\over9\) + \(2\over9\) = [ \(8\over9\)]

Q7) \(3\over11\) + \(2\over11\) + \(2\over11\) = [ \(7\over11\)]

Q8) \(6\over12\) + \(3\over12\) = \({ }\over12\) [ \(9\over12\)]

Q8) \(5\over8\) + \(2\over8\) = [ \(7\over8\)]

Q8) \(6\over14\) + \(2\over14\) + \(3\over14\) = [ \(11\over14\)]

Q9) \(2\over9\) + \(2\over9\) = \({ }\over9\) [ \(4\over9\)]

Q9) \(2\over10\) + \(4\over10\) = [ \(6\over10\)]

Q9) \(3\over14\) + \(2\over14\) + \(2\over14\) = [ \(7\over14\)]

Q10) \(2\over6\) + \(3\over6\) = \({ }\over6\) [ \(5\over6\)]

Q10) \(7\over12\) + \(4\over12\) = [ \(11\over12\)]

Q10) \(3\over11\) + \(3\over11\) + \(4\over11\) = [ \(10\over11\)]