Mr Daniels Maths
Fraction Addition Part 2

Set 1

Set 2

Set 3

Q1) \(\frac{3}{8}\) + \(\frac{4}{9}\) = \({ ...+ ...}\over72\) = \({...}\over{...}\) [ \(\frac{59}{72}\) 72]

Q1) \(\frac{3}{5}\) + \(\frac{3}{10}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{9}{10}\)]

Q1) \(\frac{2}{9}\) + \(\frac{3}{7}\) = [ \(\frac{41}{63}\)]

Q2) \(\frac{3}{10}\) + \(\frac{2}{5}\) = \({ ...+ ...}\over10\) = \({...}\over{...}\) [ \(\frac{7}{10}\) 10]

Q2) \(\frac{2}{9}\) + \(\frac{5}{9}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{7}{9}\)]

Q2) \(\frac{2}{7}\) + \(\frac{2}{3}\) = [ \(\frac{20}{21}\)]

Q3) \(\frac{3}{8}\) + \(\frac{2}{7}\) = \({ ...+ ...}\over56\) = \({...}\over{...}\) [ \(\frac{37}{56}\) 56]

Q3) \(\frac{2}{9}\) + \(\frac{1}{3}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{5}{9}\)]

Q3) \(\frac{1}{4}\) + \(\frac{4}{7}\) = [ \(\frac{23}{28}\)]

Q4) \(\frac{2}{9}\) + \(\frac{3}{4}\) = \({ ...+ ...}\over36\) = \({...}\over{...}\) [ \(\frac{35}{36}\) 36]

Q4) \(\frac{2}{9}\) + \(\frac{2}{3}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{8}{9}\)]

Q4) \(\frac{2}{9}\) + \(\frac{7}{10}\) = [ \(\frac{83}{90}\)]

Q5) \(\frac{5}{9}\) + \(\frac{3}{7}\) = \({ ...+ ...}\over63\) = \({...}\over{...}\) [ \(\frac{62}{63}\) 63]

Q5) \(\frac{5}{9}\) + \(\frac{1}{4}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{29}{36}\)]

Q5) \(\frac{1}{4}\) + \(\frac{2}{7}\) = [ \(\frac{15}{28}\)]

Q6) \(\frac{2}{9}\) + \(\frac{3}{4}\) = \({ ...+ ...}\over36\) = \({...}\over{...}\) [ \(\frac{35}{36}\) 36]

Q6) \(\frac{3}{7}\) + \(\frac{1}{3}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{16}{21}\)]

Q6) \(\frac{2}{9}\) + \(\frac{5}{7}\) = [ \(\frac{59}{63}\)]

Q7) \(\frac{7}{10}\) + \(\frac{2}{7}\) = \({ ...+ ...}\over70\) = \({...}\over{...}\) [ \(\frac{69}{70}\) 70]

Q7) \(\frac{2}{3}\) + \(\frac{1}{4}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{11}{12}\)]

Q7) \(\frac{3}{7}\) + \(\frac{4}{9}\) = [ \(\frac{55}{63}\)]

Q8) \(\frac{2}{9}\) + \(\frac{5}{8}\) = \({ ...+ ...}\over72\) = \({...}\over{...}\) [ \(\frac{61}{72}\) 72]

Q8) \(\frac{2}{5}\) + \(\frac{1}{2}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{9}{10}\)]

Q8) \(\frac{1}{5}\) + \(\frac{1}{2}\) = [ \(\frac{7}{10}\)]

Q9) \(\frac{2}{5}\) + \(\frac{2}{9}\) = \({ ...+ ...}\over45\) = \({...}\over{...}\) [ \(\frac{28}{45}\) 45]

Q9) \(\frac{1}{3}\) + \(\frac{5}{8}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{23}{24}\)]

Q9) \(\frac{1}{3}\) + \(\frac{1}{3}\) = [ \(\frac{2}{3}\)]

Q10) \(\frac{2}{9}\) + \(\frac{7}{10}\) = \({ ...+ ...}\over90\) = \({...}\over{...}\) [ \(\frac{83}{90}\) 90]

Q10) \(\frac{2}{5}\) + \(\frac{2}{7}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{24}{35}\)]

Q10) \(\frac{3}{5}\) + \(\frac{2}{7}\) = [ \(\frac{31}{35}\)]