Mr Daniels Maths
Fraction Addition Part 2

Set 1

Set 2

Set 3

Q1) \(\frac{4}{9}\) + \(\frac{3}{10}\) = \({ ...+ ...}\over90\) = \({...}\over{...}\) [ \(\frac{67}{90}\) 90]

Q1) \(\frac{1}{5}\) + \(\frac{7}{9}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{44}{45}\)]

Q1) \(\frac{1}{4}\) + \(\frac{5}{9}\) = [ \(\frac{29}{36}\)]

Q2) \(\frac{2}{7}\) + \(\frac{2}{9}\) = \({ ...+ ...}\over63\) = \({...}\over{...}\) [ \(\frac{32}{63}\) 63]

Q2) \(\frac{1}{5}\) + \(\frac{3}{4}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{19}{20}\)]

Q2) \(\frac{1}{4}\) + \(\frac{5}{7}\) = [ \(\frac{27}{28}\)]

Q3) \(\frac{2}{7}\) + \(\frac{3}{10}\) = \({ ...+ ...}\over70\) = \({...}\over{...}\) [ \(\frac{41}{70}\) 70]

Q3) \(\frac{1}{2}\) + \(\frac{2}{5}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{9}{10}\)]

Q3) \(\frac{4}{7}\) + \(\frac{1}{4}\) = [ \(\frac{23}{28}\)]

Q4) \(\frac{3}{8}\) + \(\frac{4}{9}\) = \({ ...+ ...}\over72\) = \({...}\over{...}\) [ \(\frac{59}{72}\) 72]

Q4) \(\frac{1}{4}\) + \(\frac{1}{2}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{3}{4}\)]

Q4) \(\frac{3}{8}\) + \(\frac{3}{7}\) = [ \(\frac{45}{56}\)]

Q5) \(\frac{2}{5}\) + \(\frac{3}{10}\) = \({ ...+ ...}\over10\) = \({...}\over{...}\) [ \(\frac{7}{10}\) 10]

Q5) \(\frac{4}{7}\) + \(\frac{2}{7}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{6}{7}\)]

Q5) \(\frac{1}{3}\) + \(\frac{1}{2}\) = [ \(\frac{5}{6}\)]

Q6) \(\frac{2}{5}\) + \(\frac{4}{7}\) = \({ ...+ ...}\over35\) = \({...}\over{...}\) [ \(\frac{34}{35}\) 35]

Q6) \(\frac{1}{3}\) + \(\frac{1}{2}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{5}{6}\)]

Q6) \(\frac{2}{5}\) + \(\frac{3}{8}\) = [ \(\frac{31}{40}\)]

Q7) \(\frac{4}{7}\) + \(\frac{2}{9}\) = \({ ...+ ...}\over63\) = \({...}\over{...}\) [ \(\frac{50}{63}\) 63]

Q7) \(\frac{1}{2}\) + \(\frac{2}{9}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{13}{18}\)]

Q7) \(\frac{3}{8}\) + \(\frac{1}{3}\) = [ \(\frac{17}{24}\)]

Q8) \(\frac{5}{8}\) + \(\frac{2}{7}\) = \({ ...+ ...}\over56\) = \({...}\over{...}\) [ \(\frac{51}{56}\) 56]

Q8) \(\frac{1}{3}\) + \(\frac{1}{4}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{7}{12}\)]

Q8) \(\frac{1}{3}\) + \(\frac{3}{8}\) = [ \(\frac{17}{24}\)]

Q9) \(\frac{2}{9}\) + \(\frac{2}{5}\) = \({ ...+ ...}\over45\) = \({...}\over{...}\) [ \(\frac{28}{45}\) 45]

Q9) \(\frac{2}{7}\) + \(\frac{2}{3}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{20}{21}\)]

Q9) \(\frac{1}{2}\) + \(\frac{3}{10}\) = [ \(\frac{4}{5}\)]

Q10) \(\frac{3}{10}\) + \(\frac{2}{7}\) = \({ ...+ ...}\over70\) = \({...}\over{...}\) [ \(\frac{41}{70}\) 70]

Q10) \(\frac{2}{7}\) + \(\frac{1}{2}\) = \({... + ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{11}{14}\)]

Q10) \(\frac{1}{3}\) + \(\frac{1}{2}\) = [ \(\frac{5}{6}\)]