Q1) \(\frac{1}{5}\) + \(\frac{2}{3}\) = [ \(\frac{13}{15}\)]
Q1) \(\frac{5}{7}\) - \(\frac{2}{5}\) = [ \(\frac{11}{35}\)]
Q1) 2\(\frac{3}{7}\) - 1\(\frac{6}{7}\) = [ \(\frac{4}{7}\)]
Q2) \(\frac{1}{2}\) + \(\frac{2}{9}\) = [ \(\frac{13}{18}\)]
Q2) \(\frac{2}{3}\) - \(\frac{1}{7}\) = [ \(\frac{11}{21}\)]
Q2) 3\(\frac{1}{2}\) + \(\frac{6}{7}\) = [ 4\(\frac{5}{14}\)]
Q3) \(\frac{1}{4}\) + \(\frac{1}{5}\) = [ \(\frac{9}{20}\)]
Q3) \(\frac{2}{3}\) - \(\frac{7}{13}\) = [ \(\frac{5}{39}\)]
Q3) 1\(\frac{1}{5}\) + \(\frac{4}{5}\) = [ 2]
Q4) \(\frac{5}{9}\) + \(\frac{2}{7}\) = [ \(\frac{53}{63}\)]
Q4) \(\frac{3}{4}\) - \(\frac{1}{5}\) = [ \(\frac{11}{20}\)]
Q4) 1\(\frac{3}{5}\) + \(\frac{2}{5}\) = [ 2]
Q5) \(\frac{4}{9}\) + \(\frac{2}{9}\) = [ \(\frac{2}{3}\)]
Q5) \(\frac{5}{6}\) - \(\frac{2}{3}\) = [ \(\frac{1}{6}\)]
Q5) 4\(\frac{1}{3}\) - 1\(\frac{3}{5}\) = [ 2\(\frac{11}{15}\)]
Q6) \(\frac{2}{3}\) + \(\frac{2}{9}\) = [ \(\frac{8}{9}\)]
Q6) \(\frac{2}{3}\) - \(\frac{7}{16}\) = [ \(\frac{11}{48}\)]
Q6) 1\(\frac{1}{4}\) + \(\frac{8}{9}\) = [ 2\(\frac{5}{36}\)]
Q7) \(\frac{3}{7}\) + \(\frac{5}{9}\) = [ \(\frac{62}{63}\)]
Q7) \(\frac{7}{8}\) - \(\frac{1}{2}\) = [ \(\frac{3}{8}\)]
Q7) 4\(\frac{1}{3}\) - 1\(\frac{4}{9}\) = [ 2\(\frac{8}{9}\)]
Q8) \(\frac{2}{5}\) + \(\frac{1}{3}\) = [ \(\frac{11}{15}\)]
Q8) \(\frac{4}{5}\) - \(\frac{2}{3}\) = [ \(\frac{2}{15}\)]
Q8) 2\(\frac{1}{4}\) + \(\frac{9}{10}\) = [ 3\(\frac{3}{20}\)]
Q9) \(\frac{1}{5}\) + \(\frac{5}{8}\) = [ \(\frac{33}{40}\)]
Q9) \(\frac{2}{3}\) - \(\frac{4}{7}\) = [ \(\frac{2}{21}\)]
Q9) 1\(\frac{1}{4}\) + \(\frac{5}{8}\) = [ 1\(\frac{7}{8}\)]
Q10) \(\frac{1}{3}\) + \(\frac{3}{8}\) = [ \(\frac{17}{24}\)]
Q10) \(\frac{7}{9}\) - \(\frac{2}{5}\) = [ \(\frac{17}{45}\)]
Q10) 1\(\frac{1}{2}\) + \(\frac{3}{4}\) = [ 2\(\frac{1}{4}\)]