Q1) \(\frac{2}{5}\) + \(\frac{1}{3}\) = [ \(\frac{11}{15}\)]
Q1) \(\frac{4}{5}\) - \(\frac{1}{2}\) = [ \(\frac{3}{10}\)]
Q1) 1\(\frac{3}{5}\) + \(\frac{4}{9}\) = [ 2\(\frac{2}{45}\)]
Q2) \(\frac{1}{5}\) + \(\frac{5}{8}\) = [ \(\frac{33}{40}\)]
Q2) \(\frac{3}{5}\) - \(\frac{1}{2}\) = [ \(\frac{1}{10}\)]
Q2) 1\(\frac{4}{7}\) - 1\(\frac{3}{7}\) = [ \(\frac{1}{7}\)]
Q3) \(\frac{3}{8}\) + \(\frac{3}{5}\) = [ \(\frac{39}{40}\)]
Q3) \(\frac{3}{4}\) - \(\frac{1}{3}\) = [ \(\frac{5}{12}\)]
Q3) 2\(\frac{2}{3}\) - 1\(\frac{7}{8}\) = [ \(\frac{19}{24}\)]
Q4) \(\frac{5}{9}\) + \(\frac{1}{5}\) = [ \(\frac{34}{45}\)]
Q4) \(\frac{5}{6}\) - \(\frac{3}{5}\) = [ \(\frac{7}{30}\)]
Q4) 1\(\frac{1}{4}\) + \(\frac{5}{8}\) = [ 1\(\frac{7}{8}\)]
Q5) \(\frac{2}{3}\) + \(\frac{2}{9}\) = [ \(\frac{8}{9}\)]
Q5) \(\frac{2}{3}\) - \(\frac{3}{7}\) = [ \(\frac{5}{21}\)]
Q5) 1\(\frac{3}{5}\) + \(\frac{1}{4}\) = [ 1\(\frac{17}{20}\)]
Q6) \(\frac{1}{3}\) + \(\frac{1}{3}\) = [ \(\frac{2}{3}\)]
Q6) \(\frac{2}{3}\) - \(\frac{3}{8}\) = [ \(\frac{7}{24}\)]
Q6) 2\(\frac{1}{2}\) - 2\(\frac{1}{3}\) = [ \(\frac{1}{6}\)]
Q7) \(\frac{1}{3}\) + \(\frac{1}{3}\) = [ \(\frac{2}{3}\)]
Q7) \(\frac{2}{3}\) - \(\frac{2}{11}\) = [ \(\frac{16}{33}\)]
Q7) 2\(\frac{1}{2}\) + \(\frac{1}{2}\) = [ 3]
Q8) \(\frac{3}{8}\) + \(\frac{5}{9}\) = [ \(\frac{67}{72}\)]
Q8) \(\frac{2}{3}\) - \(\frac{5}{8}\) = [ \(\frac{1}{24}\)]
Q8) 1\(\frac{1}{2}\) + \(\frac{1}{3}\) = [ 1\(\frac{5}{6}\)]
Q9) \(\frac{4}{9}\) + \(\frac{2}{9}\) = [ \(\frac{2}{3}\)]
Q9) \(\frac{2}{3}\) - \(\frac{1}{2}\) = [ \(\frac{1}{6}\)]
Q9) 4\(\frac{1}{2}\) + \(\frac{4}{7}\) = [ 5\(\frac{1}{14}\)]
Q10) \(\frac{1}{2}\) + \(\frac{2}{7}\) = [ \(\frac{11}{14}\)]
Q10) \(\frac{4}{5}\) - \(\frac{2}{9}\) = [ \(\frac{26}{45}\)]
Q10) 1\(\frac{2}{5}\) + \(\frac{1}{4}\) = [ 1\(\frac{13}{20}\)]