Mr Daniels Maths
Fraction Addition and Subtraction

Set 1

Set 2

Set 3

Q1) \(\frac{2}{5}\) + \(\frac{1}{3}\) = [ \(\frac{11}{15}\)]

Q1) \(\frac{4}{5}\) - \(\frac{1}{2}\) = [ \(\frac{3}{10}\)]

Q1) 1\(\frac{3}{5}\) + \(\frac{4}{9}\) = [ 2\(\frac{2}{45}\)]

Q2) \(\frac{1}{5}\) + \(\frac{5}{8}\) = [ \(\frac{33}{40}\)]

Q2) \(\frac{3}{5}\) - \(\frac{1}{2}\) = [ \(\frac{1}{10}\)]

Q2) 1\(\frac{4}{7}\) - 1\(\frac{3}{7}\) = [ \(\frac{1}{7}\)]

Q3) \(\frac{3}{8}\) + \(\frac{3}{5}\) = [ \(\frac{39}{40}\)]

Q3) \(\frac{3}{4}\) - \(\frac{1}{3}\) = [ \(\frac{5}{12}\)]

Q3) 2\(\frac{2}{3}\) - 1\(\frac{7}{8}\) = [ \(\frac{19}{24}\)]

Q4) \(\frac{5}{9}\) + \(\frac{1}{5}\) = [ \(\frac{34}{45}\)]

Q4) \(\frac{5}{6}\) - \(\frac{3}{5}\) = [ \(\frac{7}{30}\)]

Q4) 1\(\frac{1}{4}\) + \(\frac{5}{8}\) = [ 1\(\frac{7}{8}\)]

Q5) \(\frac{2}{3}\) + \(\frac{2}{9}\) = [ \(\frac{8}{9}\)]

Q5) \(\frac{2}{3}\) - \(\frac{3}{7}\) = [ \(\frac{5}{21}\)]

Q5) 1\(\frac{3}{5}\) + \(\frac{1}{4}\) = [ 1\(\frac{17}{20}\)]

Q6) \(\frac{1}{3}\) + \(\frac{1}{3}\) = [ \(\frac{2}{3}\)]

Q6) \(\frac{2}{3}\) - \(\frac{3}{8}\) = [ \(\frac{7}{24}\)]

Q6) 2\(\frac{1}{2}\) - 2\(\frac{1}{3}\) = [ \(\frac{1}{6}\)]

Q7) \(\frac{1}{3}\) + \(\frac{1}{3}\) = [ \(\frac{2}{3}\)]

Q7) \(\frac{2}{3}\) - \(\frac{2}{11}\) = [ \(\frac{16}{33}\)]

Q7) 2\(\frac{1}{2}\) + \(\frac{1}{2}\) = [ 3]

Q8) \(\frac{3}{8}\) + \(\frac{5}{9}\) = [ \(\frac{67}{72}\)]

Q8) \(\frac{2}{3}\) - \(\frac{5}{8}\) = [ \(\frac{1}{24}\)]

Q8) 1\(\frac{1}{2}\) + \(\frac{1}{3}\) = [ 1\(\frac{5}{6}\)]

Q9) \(\frac{4}{9}\) + \(\frac{2}{9}\) = [ \(\frac{2}{3}\)]

Q9) \(\frac{2}{3}\) - \(\frac{1}{2}\) = [ \(\frac{1}{6}\)]

Q9) 4\(\frac{1}{2}\) + \(\frac{4}{7}\) = [ 5\(\frac{1}{14}\)]

Q10) \(\frac{1}{2}\) + \(\frac{2}{7}\) = [ \(\frac{11}{14}\)]

Q10) \(\frac{4}{5}\) - \(\frac{2}{9}\) = [ \(\frac{26}{45}\)]

Q10) 1\(\frac{2}{5}\) + \(\frac{1}{4}\) = [ 1\(\frac{13}{20}\)]