Q1) \(\frac{1}{5}\) + \(\frac{1}{4}\) = [ \(\frac{9}{20}\)]
Q1) \(\frac{2}{3}\) - \(\frac{3}{5}\) = [ \(\frac{1}{15}\)]
Q1) 1\(\frac{1}{5}\) + \(\frac{1}{3}\) = [ 1\(\frac{8}{15}\)]
Q2) \(\frac{5}{7}\) + \(\frac{1}{5}\) = [ \(\frac{32}{35}\)]
Q2) \(\frac{2}{3}\) - \(\frac{2}{5}\) = [ \(\frac{4}{15}\)]
Q2) 1\(\frac{3}{7}\) + \(\frac{1}{2}\) = [ 1\(\frac{13}{14}\)]
Q3) \(\frac{3}{7}\) + \(\frac{2}{7}\) = [ \(\frac{5}{7}\)]
Q3) \(\frac{4}{5}\) - \(\frac{3}{5}\) = [ \(\frac{1}{5}\)]
Q3) 1\(\frac{1}{3}\) + \(\frac{7}{8}\) = [ 2\(\frac{5}{24}\)]
Q4) \(\frac{2}{3}\) + \(\frac{1}{5}\) = [ \(\frac{13}{15}\)]
Q4) \(\frac{2}{3}\) - \(\frac{7}{16}\) = [ \(\frac{11}{48}\)]
Q4) 3\(\frac{1}{2}\) - 2\(\frac{1}{3}\) = [ 1\(\frac{1}{6}\)]
Q5) \(\frac{1}{4}\) + \(\frac{2}{5}\) = [ \(\frac{13}{20}\)]
Q5) \(\frac{2}{3}\) - \(\frac{2}{7}\) = [ \(\frac{8}{21}\)]
Q5) 1\(\frac{1}{2}\) + \(\frac{2}{9}\) = [ 1\(\frac{13}{18}\)]
Q6) \(\frac{1}{2}\) + \(\frac{3}{8}\) = [ \(\frac{7}{8}\)]
Q6) \(\frac{4}{5}\) - \(\frac{2}{3}\) = [ \(\frac{2}{15}\)]
Q6) 2\(\frac{2}{3}\) - 2\(\frac{1}{6}\) = [ \(\frac{1}{2}\)]
Q7) \(\frac{2}{3}\) + \(\frac{2}{7}\) = [ \(\frac{20}{21}\)]
Q7) \(\frac{2}{3}\) - \(\frac{3}{7}\) = [ \(\frac{5}{21}\)]
Q7) 1\(\frac{4}{9}\) - 1\(\frac{2}{5}\) = [ \(\frac{2}{45}\)]
Q8) \(\frac{3}{8}\) + \(\frac{2}{7}\) = [ \(\frac{37}{56}\)]
Q8) \(\frac{2}{3}\) - \(\frac{3}{5}\) = [ \(\frac{1}{15}\)]
Q8) 1\(\frac{3}{5}\) + \(\frac{4}{5}\) = [ 2\(\frac{2}{5}\)]
Q9) \(\frac{4}{9}\) + \(\frac{3}{10}\) = [ \(\frac{67}{90}\)]
Q9) \(\frac{2}{3}\) - \(\frac{1}{2}\) = [ \(\frac{1}{6}\)]
Q9) 3\(\frac{1}{3}\) + \(\frac{1}{4}\) = [ 3\(\frac{7}{12}\)]
Q10) \(\frac{2}{5}\) + \(\frac{1}{2}\) = [ \(\frac{9}{10}\)]
Q10) \(\frac{1}{2}\) - \(\frac{3}{11}\) = [ \(\frac{5}{22}\)]
Q10) 1\(\frac{2}{3}\) - 1\(\frac{1}{2}\) = [ \(\frac{1}{6}\)]