Mr Daniels Maths
Fraction Addition and Subtraction

Set 1

Set 2

Set 3

Q1) \(\frac{1}{5}\) + \(\frac{2}{3}\) = [ \(\frac{13}{15}\)]

Q1) \(\frac{5}{7}\) - \(\frac{2}{5}\) = [ \(\frac{11}{35}\)]

Q1) 2\(\frac{3}{7}\) - 1\(\frac{6}{7}\) = [ \(\frac{4}{7}\)]

Q2) \(\frac{1}{2}\) + \(\frac{2}{9}\) = [ \(\frac{13}{18}\)]

Q2) \(\frac{2}{3}\) - \(\frac{1}{7}\) = [ \(\frac{11}{21}\)]

Q2) 3\(\frac{1}{2}\) + \(\frac{6}{7}\) = [ 4\(\frac{5}{14}\)]

Q3) \(\frac{1}{4}\) + \(\frac{1}{5}\) = [ \(\frac{9}{20}\)]

Q3) \(\frac{2}{3}\) - \(\frac{7}{13}\) = [ \(\frac{5}{39}\)]

Q3) 1\(\frac{1}{5}\) + \(\frac{4}{5}\) = [ 2]

Q4) \(\frac{5}{9}\) + \(\frac{2}{7}\) = [ \(\frac{53}{63}\)]

Q4) \(\frac{3}{4}\) - \(\frac{1}{5}\) = [ \(\frac{11}{20}\)]

Q4) 1\(\frac{3}{5}\) + \(\frac{2}{5}\) = [ 2]

Q5) \(\frac{4}{9}\) + \(\frac{2}{9}\) = [ \(\frac{2}{3}\)]

Q5) \(\frac{5}{6}\) - \(\frac{2}{3}\) = [ \(\frac{1}{6}\)]

Q5) 4\(\frac{1}{3}\) - 1\(\frac{3}{5}\) = [ 2\(\frac{11}{15}\)]

Q6) \(\frac{2}{3}\) + \(\frac{2}{9}\) = [ \(\frac{8}{9}\)]

Q6) \(\frac{2}{3}\) - \(\frac{7}{16}\) = [ \(\frac{11}{48}\)]

Q6) 1\(\frac{1}{4}\) + \(\frac{8}{9}\) = [ 2\(\frac{5}{36}\)]

Q7) \(\frac{3}{7}\) + \(\frac{5}{9}\) = [ \(\frac{62}{63}\)]

Q7) \(\frac{7}{8}\) - \(\frac{1}{2}\) = [ \(\frac{3}{8}\)]

Q7) 4\(\frac{1}{3}\) - 1\(\frac{4}{9}\) = [ 2\(\frac{8}{9}\)]

Q8) \(\frac{2}{5}\) + \(\frac{1}{3}\) = [ \(\frac{11}{15}\)]

Q8) \(\frac{4}{5}\) - \(\frac{2}{3}\) = [ \(\frac{2}{15}\)]

Q8) 2\(\frac{1}{4}\) + \(\frac{9}{10}\) = [ 3\(\frac{3}{20}\)]

Q9) \(\frac{1}{5}\) + \(\frac{5}{8}\) = [ \(\frac{33}{40}\)]

Q9) \(\frac{2}{3}\) - \(\frac{4}{7}\) = [ \(\frac{2}{21}\)]

Q9) 1\(\frac{1}{4}\) + \(\frac{5}{8}\) = [ 1\(\frac{7}{8}\)]

Q10) \(\frac{1}{3}\) + \(\frac{3}{8}\) = [ \(\frac{17}{24}\)]

Q10) \(\frac{7}{9}\) - \(\frac{2}{5}\) = [ \(\frac{17}{45}\)]

Q10) 1\(\frac{1}{2}\) + \(\frac{3}{4}\) = [ 2\(\frac{1}{4}\)]