Q1) \(3\over4\) \(\div\) \(9\over8\) = [ \(\frac{2}{3}\)]
Q1) \(2\over3\) x \(6\over8\) \(\div\) \(13\over16\)= [ \(\frac{8}{13}\)]
Q1) \(3\over4\) x \(8\over10\) - \(5\over10\)= [ \(\frac{1}{10}\)]
Q2) \(2\over4\) x \(8\over9\) = [ \(\frac{4}{9}\)]
Q2) \(2\over4\) x \(8\over9\) \(\div\) \(14\over27\)= [ \(\frac{6}{7}\)]
Q2) \(2\over3\) x \(9\over10\) - \(4\over10\)= [ \(\frac{1}{5}\)]
Q3) \(3\over4\) x \(8\over10\) = [ \(\frac{3}{5}\)]
Q3) \(2\over3\) x \(6\over7\) x \(14\over10\)= [ \(\frac{4}{5}\)]
Q3) \(2\over3\) x \(9\over10\) - \(3\over10\)= [ \(\frac{3}{10}\)]
Q4) \(2\over3\) \(\div\) \(7\over6\) = [ \(\frac{4}{7}\)]
Q4) \(2\over4\) x \(8\over9\) x \(18\over9\)= [ \(\frac{8}{9}\)]
Q4) \(3\over4\) x \(8\over9\) - \(6\over9\)= [ 0]
Q5) \(3\over4\) x \(8\over9\) = [ \(\frac{2}{3}\)]
Q5) \(2\over4\) x \(8\over10\) \(\div\) \(13\over30\)= [ \(\frac{12}{13}\)]
Q5) \(2\over3\) x \(6\over7\) - \(2\over7\)= [ \(\frac{2}{7}\)]
Q6) \(2\over4\) \(\div\) \(10\over8\) = [ \(\frac{2}{5}\)]
Q6) \(2\over3\) x \(6\over10\) x \(20\over14\)= [ \(\frac{4}{7}\)]
Q6) \(3\over4\) x \(8\over10\) x \(20\over15\) + \(2\over10\)= [ 1]
Q7) \(3\over4\) \(\div\) \(10\over8\) = [ \(\frac{3}{5}\)]
Q7) \(2\over3\) x \(6\over7\) \(\div\) \(13\over21\)= [ \(\frac{12}{13}\)]
Q7) \(2\over4\) x \(8\over9\) x \(18\over11\) + \(6\over9\)= [ 1\(\frac{13}{33}\)]
Q8) \(2\over3\) \(\div\) \(10\over6\) = [ \(\frac{2}{5}\)]
Q8) \(2\over3\) x \(6\over9\) \(\div\) \(12\over18\)= [ \(\frac{2}{3}\)]
Q8) \(2\over4\) x \(8\over10\) x \(30\over15\) + \(6\over10\)= [ 1\(\frac{2}{5}\)]
Q9) \(2\over4\) \(\div\) \(9\over8\) = [ \(\frac{4}{9}\)]
Q9) \(2\over3\) x \(6\over7\) \(\div\) \(15\over21\)= [ \(\frac{4}{5}\)]
Q9) \(2\over3\) x \(6\over10\) x \(30\over14\) + \(5\over10\)= [ 1\(\frac{5}{14}\)]
Q10) \(3\over4\) x \(8\over10\) = [ \(\frac{3}{5}\)]
Q10) \(3\over4\) x \(8\over10\) \(\div\) \(13\over20\)= [ \(\frac{12}{13}\)]
Q10) \(2\over3\) x \(6\over8\) x \(16\over10\) + \(2\over8\)= [ 1\(\frac{1}{20}\)]