Q1) \(2\over3\) x \(6\over8\) = [ \(\frac{1}{2}\)]
Q1) \(3\over4\) x \(8\over10\) \(\div\) \(13\over20\)= [ \(\frac{12}{13}\)]
Q1) \(2\over4\) x \(8\over9\) x \(18\over15\) + \(5\over9\)= [ 1\(\frac{4}{45}\)]
Q2) \(2\over4\) x \(8\over10\) = [ \(\frac{2}{5}\)]
Q2) \(2\over3\) x \(6\over8\) x \(16\over13\)= [ \(\frac{8}{13}\)]
Q2) \(2\over3\) x \(6\over7\) + \(5\over7\)= [ 1\(\frac{2}{7}\)]
Q3) \(2\over3\) \(\div\) \(10\over6\) = [ \(\frac{2}{5}\)]
Q3) \(2\over3\) x \(6\over7\) \(\div\) \(10\over14\)= [ \(\frac{4}{5}\)]
Q3) \(2\over4\) x \(8\over10\) - \(3\over10\)= [ \(\frac{1}{10}\)]
Q4) \(2\over3\) \(\div\) \(10\over9\) = [ \(\frac{3}{5}\)]
Q4) \(2\over3\) x \(6\over8\) \(\div\) \(14\over24\)= [ \(\frac{6}{7}\)]
Q4) \(3\over4\) x \(8\over10\) x \(20\over13\) - \(5\over10\)= [ \(\frac{11}{26}\)]
Q5) \(3\over4\) x \(8\over10\) = [ \(\frac{3}{5}\)]
Q5) \(2\over3\) x \(6\over7\) \(\div\) \(13\over14\)= [ \(\frac{8}{13}\)]
Q5) \(3\over4\) x \(8\over10\) + \(7\over10\)= [ 1\(\frac{3}{10}\)]
Q6) \(2\over3\) \(\div\) \(10\over6\) = [ \(\frac{2}{5}\)]
Q6) \(2\over3\) x \(6\over9\) x \(27\over13\)= [ \(\frac{12}{13}\)]
Q6) \(3\over4\) x \(8\over10\) - \(6\over10\)= [ 0]
Q7) \(2\over3\) x \(6\over9\) = [ \(\frac{4}{9}\)]
Q7) \(2\over4\) x \(8\over9\) \(\div\) \(14\over27\)= [ \(\frac{6}{7}\)]
Q7) \(2\over3\) x \(6\over9\) + \(5\over9\)= [ 1]
Q8) \(2\over4\) x \(8\over10\) = [ \(\frac{2}{5}\)]
Q8) \(2\over4\) x \(8\over10\) \(\div\) \(9\over20\)= [ \(\frac{8}{9}\)]
Q8) \(3\over4\) x \(8\over9\) x \(18\over13\) - \(7\over9\)= [ \(\frac{17}{117}\)]
Q9) \(2\over4\) x \(8\over9\) = [ \(\frac{4}{9}\)]
Q9) \(2\over3\) x \(6\over7\) \(\div\) \(15\over14\)= [ \(\frac{8}{15}\)]
Q9) \(2\over3\) x \(6\over9\) + \(7\over9\)= [ 1\(\frac{2}{9}\)]
Q10) \(2\over3\) x \(6\over9\) = [ \(\frac{4}{9}\)]
Q10) \(2\over3\) x \(6\over9\) \(\div\) \(10\over18\)= [ \(\frac{4}{5}\)]
Q10) \(2\over3\) x \(9\over10\) - \(3\over10\)= [ \(\frac{3}{10}\)]