Q1) \(\frac{4}{9}\) \(\div\) \(\frac{3}{4}\) = [ \(\frac{16}{27}\)]
Q1) \(\frac{1}{2}\) \(\div\) \(\frac{6}{11}\) = [ \(\frac{11}{12}\)]
Q1) 1\(\frac{3}{4}\) \(\div\) 1\(\frac{1}{3}\) = [ 1\(\frac{5}{16}\)]
Q2) \(\frac{2}{3}\) \(\div\) \(\frac{5}{8}\) = [ 1\(\frac{1}{15}\)]
Q2) \(\frac{4}{7}\) \(\div\) \(\frac{3}{19}\) = [ 3\(\frac{13}{21}\)]
Q2) 1\(\frac{1}{5}\) \(\div\) 1\(\frac{1}{7}\) = [ 1\(\frac{1}{20}\)]
Q3) \(\frac{1}{2}\) \(\div\) \(\frac{1}{5}\) = [ 2\(\frac{1}{2}\)]
Q3) \(\frac{1}{7}\) \(\div\) \(\frac{2}{5}\) = [ \(\frac{5}{14}\)]
Q3) 1\(\frac{1}{2}\) \(\div\) 2\(\frac{1}{2}\) = [ \(\frac{3}{5}\)]
Q4) \(\frac{6}{7}\) \(\div\) \(\frac{1}{2}\) = [ 1\(\frac{5}{7}\)]
Q4) \(\frac{5}{8}\) \(\div\) \(\frac{1}{4}\) = [ 2\(\frac{1}{2}\)]
Q4) 1\(\frac{1}{4}\) \(\div\) 1\(\frac{1}{2}\) = [ \(\frac{5}{6}\)]
Q5) \(\frac{3}{4}\) \(\div\) \(\frac{5}{8}\) = [ 1\(\frac{1}{5}\)]
Q5) \(\frac{3}{11}\) \(\div\) \(\frac{5}{11}\) = [ \(\frac{3}{5}\)]
Q5) 1\(\frac{1}{3}\) \(\div\) 1\(\frac{3}{4}\) = [ \(\frac{16}{21}\)]
Q6) \(\frac{2}{9}\) \(\div\) \(\frac{4}{7}\) = [ \(\frac{7}{18}\)]
Q6) \(\frac{1}{8}\) \(\div\) \(\frac{7}{19}\) = [ \(\frac{19}{56}\)]
Q6) 2\(\frac{1}{2}\) \(\div\) 2\(\frac{1}{4}\) = [ 1\(\frac{1}{9}\)]
Q7) \(\frac{3}{8}\) \(\div\) \(\frac{3}{4}\) = [ \(\frac{1}{2}\)]
Q7) \(\frac{3}{19}\) \(\div\) \(\frac{1}{6}\) = [ \(\frac{18}{19}\)]
Q7) 1\(\frac{3}{7}\) \(\div\) 1\(\frac{3}{5}\) = [ \(\frac{25}{28}\)]
Q8) \(\frac{5}{8}\) \(\div\) \(\frac{2}{9}\) = [ 2\(\frac{13}{16}\)]
Q8) \(\frac{1}{3}\) \(\div\) \(\frac{1}{2}\) = [ \(\frac{2}{3}\)]
Q8) 1\(\frac{3}{7}\) \(\div\) 2\(\frac{2}{3}\) = [ \(\frac{15}{28}\)]
Q9) \(\frac{2}{7}\) \(\div\) \(\frac{8}{9}\) = [ \(\frac{9}{28}\)]
Q9) \(\frac{6}{13}\) \(\div\) \(\frac{8}{19}\) = [ 1\(\frac{5}{52}\)]
Q9) 2\(\frac{2}{3}\) \(\div\) 1\(\frac{1}{3}\) = [ 2]
Q10) \(\frac{3}{8}\) \(\div\) \(\frac{6}{7}\) = [ \(\frac{7}{16}\)]
Q10) \(\frac{5}{13}\) \(\div\) \(\frac{2}{3}\) = [ \(\frac{15}{26}\)]
Q10) 1\(\frac{1}{3}\) \(\div\) 1\(\frac{1}{4}\) = [ 1\(\frac{1}{15}\)]