Q1) \(\frac{6}{7}\) \(\div\) \(\frac{1}{2}\) = [ 1\(\frac{5}{7}\)]
Q1) \(\frac{7}{18}\) \(\div\) \(\frac{5}{7}\) = [ \(\frac{49}{90}\)]
Q1) 1\(\frac{1}{4}\) \(\div\) 1\(\frac{4}{5}\) = [ \(\frac{25}{36}\)]
Q2) \(\frac{1}{4}\) \(\div\) \(\frac{1}{2}\) = [ \(\frac{1}{2}\)]
Q2) \(\frac{7}{10}\) \(\div\) \(\frac{3}{11}\) = [ 2\(\frac{17}{30}\)]
Q2) 1\(\frac{1}{2}\) \(\div\) 3\(\frac{1}{3}\) = [ \(\frac{9}{20}\)]
Q3) \(\frac{3}{4}\) \(\div\) \(\frac{3}{5}\) = [ 1\(\frac{1}{4}\)]
Q3) \(\frac{2}{3}\) \(\div\) \(\frac{1}{7}\) = [ 4\(\frac{2}{3}\)]
Q3) 1\(\frac{3}{4}\) \(\div\) 1\(\frac{1}{7}\) = [ 1\(\frac{17}{32}\)]
Q4) \(\frac{3}{4}\) \(\div\) \(\frac{2}{3}\) = [ 1\(\frac{1}{8}\)]
Q4) \(\frac{9}{19}\) \(\div\) \(\frac{1}{5}\) = [ 2\(\frac{7}{19}\)]
Q4) 1\(\frac{1}{6}\) \(\div\) 2\(\frac{1}{2}\) = [ \(\frac{7}{15}\)]
Q5) \(\frac{3}{5}\) \(\div\) \(\frac{2}{5}\) = [ 1\(\frac{1}{2}\)]
Q5) \(\frac{1}{4}\) \(\div\) \(\frac{2}{3}\) = [ \(\frac{3}{8}\)]
Q5) 1\(\frac{2}{3}\) \(\div\) 1\(\frac{3}{7}\) = [ 1\(\frac{1}{6}\)]
Q6) \(\frac{2}{5}\) \(\div\) \(\frac{1}{2}\) = [ \(\frac{4}{5}\)]
Q6) \(\frac{7}{15}\) \(\div\) \(\frac{2}{3}\) = [ \(\frac{7}{10}\)]
Q6) 1\(\frac{1}{6}\) \(\div\) 1\(\frac{4}{5}\) = [ \(\frac{35}{54}\)]
Q7) \(\frac{1}{3}\) \(\div\) \(\frac{3}{5}\) = [ \(\frac{5}{9}\)]
Q7) \(\frac{7}{11}\) \(\div\) \(\frac{7}{15}\) = [ 1\(\frac{4}{11}\)]
Q7) 4\(\frac{1}{2}\) \(\div\) 2\(\frac{1}{4}\) = [ 2]
Q8) \(\frac{8}{9}\) \(\div\) \(\frac{2}{9}\) = [ 4]
Q8) \(\frac{3}{7}\) \(\div\) \(\frac{1}{5}\) = [ 2\(\frac{1}{7}\)]
Q8) 1\(\frac{1}{6}\) \(\div\) 2\(\frac{1}{2}\) = [ \(\frac{7}{15}\)]
Q9) \(\frac{2}{9}\) \(\div\) \(\frac{5}{6}\) = [ \(\frac{4}{15}\)]
Q9) \(\frac{1}{6}\) \(\div\) \(\frac{5}{7}\) = [ \(\frac{7}{30}\)]
Q9) 1\(\frac{1}{4}\) \(\div\) 1\(\frac{1}{9}\) = [ 1\(\frac{1}{8}\)]
Q10) \(\frac{2}{3}\) \(\div\) \(\frac{2}{9}\) = [ 3]
Q10) \(\frac{5}{6}\) \(\div\) \(\frac{8}{11}\) = [ 1\(\frac{7}{48}\)]
Q10) 1\(\frac{4}{5}\) \(\div\) 1\(\frac{1}{5}\) = [ 1\(\frac{1}{2}\)]