Q1) \(\frac{3}{5}\) - \(\frac{1}{2}\) = [ \(\frac{1}{10}\)]
Q1) \(\frac{3}{8}\) \(\div\) \(\frac{8}{9}\) = [ \(\frac{27}{64}\)]
Q1) 3\(\frac{1}{2}\) x 1\(\frac{1}{2}\) = [ 5\(\frac{1}{4}\)]
Q2) \(\frac{1}{2}\) - \(\frac{2}{5}\) = [ \(\frac{1}{10}\)]
Q2) \(\frac{3}{4}\) \(\div\) \(\frac{5}{9}\) = [ 1\(\frac{7}{20}\)]
Q2) 1\(\frac{1}{4}\) x 1\(\frac{2}{3}\) = [ 2\(\frac{1}{12}\)]
Q3) \(\frac{3}{4}\) - \(\frac{2}{3}\) = [ \(\frac{1}{12}\)]
Q3) \(\frac{2}{3}\) x \(\frac{2}{9}\) = [ \(\frac{4}{27}\)]
Q3) 4\(\frac{1}{2}\) \(\div\) 1\(\frac{4}{5}\) = [ 2\(\frac{1}{2}\)]
Q4) \(\frac{1}{5}\) + \(\frac{7}{9}\) = [ \(\frac{44}{45}\)]
Q4) \(\frac{2}{3}\) \(\div\) \(\frac{3}{5}\) = [ 1\(\frac{1}{9}\)]
Q4) 4\(\frac{1}{2}\) x 1\(\frac{2}{3}\) = [ 7\(\frac{1}{2}\)]
Q5) \(\frac{3}{5}\) + \(\frac{1}{4}\) = [ \(\frac{17}{20}\)]
Q5) \(\frac{2}{3}\) x \(\frac{4}{7}\) = [ \(\frac{8}{21}\)]
Q5) 2\(\frac{1}{5}\) - 1\(\frac{1}{2}\) = [ \(\frac{7}{10}\)]
Q6) \(\frac{4}{5}\) - \(\frac{2}{3}\) = [ \(\frac{2}{15}\)]
Q6) \(\frac{3}{10}\) x \(\frac{1}{3}\) = [ \(\frac{1}{10}\)]
Q6) 1\(\frac{1}{4}\) \(\div\) 1\(\frac{1}{2}\) = [ \(\frac{5}{6}\)]
Q7) \(\frac{1}{3}\) + \(\frac{2}{7}\) = [ \(\frac{13}{21}\)]
Q7) \(\frac{3}{8}\) \(\div\) \(\frac{5}{9}\) = [ \(\frac{27}{40}\)]
Q7) 5\(\frac{1}{2}\) - 1\(\frac{1}{3}\) = [ 4\(\frac{1}{6}\)]
Q8) \(\frac{4}{5}\) - \(\frac{1}{3}\) = [ \(\frac{7}{15}\)]
Q8) \(\frac{1}{4}\) \(\div\) \(\frac{1}{2}\) = [ \(\frac{1}{2}\)]
Q8) 1\(\frac{1}{7}\) \(\div\) 2\(\frac{2}{3}\) = [ \(\frac{3}{7}\)]
Q9) \(\frac{7}{9}\) - \(\frac{2}{3}\) = [ \(\frac{1}{9}\)]
Q9) \(\frac{1}{4}\) \(\div\) \(\frac{2}{5}\) = [ \(\frac{5}{8}\)]
Q9) 1\(\frac{1}{2}\) x 1\(\frac{1}{8}\) = [ 1\(\frac{11}{16}\)]
Q10) \(\frac{1}{2}\) - \(\frac{1}{3}\) = [ \(\frac{1}{6}\)]
Q10) \(\frac{7}{9}\) \(\div\) \(\frac{2}{3}\) = [ 1\(\frac{1}{6}\)]
Q10) 2\(\frac{1}{3}\) - 1\(\frac{9}{10}\) = [ \(\frac{13}{30}\)]