Mr Daniels Maths
Fraction Four Operations

Set 1

Set 2

Set 3

Q1) \(\frac{3}{5}\) - \(\frac{1}{2}\) = [ \(\frac{1}{10}\)]

Q1) \(\frac{3}{8}\) \(\div\) \(\frac{8}{9}\) = [ \(\frac{27}{64}\)]

Q1) 3\(\frac{1}{2}\) x 1\(\frac{1}{2}\) = [ 5\(\frac{1}{4}\)]

Q2) \(\frac{1}{2}\) - \(\frac{2}{5}\) = [ \(\frac{1}{10}\)]

Q2) \(\frac{3}{4}\) \(\div\) \(\frac{5}{9}\) = [ 1\(\frac{7}{20}\)]

Q2) 1\(\frac{1}{4}\) x 1\(\frac{2}{3}\) = [ 2\(\frac{1}{12}\)]

Q3) \(\frac{3}{4}\) - \(\frac{2}{3}\) = [ \(\frac{1}{12}\)]

Q3) \(\frac{2}{3}\) x \(\frac{2}{9}\) = [ \(\frac{4}{27}\)]

Q3) 4\(\frac{1}{2}\) \(\div\) 1\(\frac{4}{5}\) = [ 2\(\frac{1}{2}\)]

Q4) \(\frac{1}{5}\) + \(\frac{7}{9}\) = [ \(\frac{44}{45}\)]

Q4) \(\frac{2}{3}\) \(\div\) \(\frac{3}{5}\) = [ 1\(\frac{1}{9}\)]

Q4) 4\(\frac{1}{2}\) x 1\(\frac{2}{3}\) = [ 7\(\frac{1}{2}\)]

Q5) \(\frac{3}{5}\) + \(\frac{1}{4}\) = [ \(\frac{17}{20}\)]

Q5) \(\frac{2}{3}\) x \(\frac{4}{7}\) = [ \(\frac{8}{21}\)]

Q5) 2\(\frac{1}{5}\) - 1\(\frac{1}{2}\) = [ \(\frac{7}{10}\)]

Q6) \(\frac{4}{5}\) - \(\frac{2}{3}\) = [ \(\frac{2}{15}\)]

Q6) \(\frac{3}{10}\) x \(\frac{1}{3}\) = [ \(\frac{1}{10}\)]

Q6) 1\(\frac{1}{4}\) \(\div\) 1\(\frac{1}{2}\) = [ \(\frac{5}{6}\)]

Q7) \(\frac{1}{3}\) + \(\frac{2}{7}\) = [ \(\frac{13}{21}\)]

Q7) \(\frac{3}{8}\) \(\div\) \(\frac{5}{9}\) = [ \(\frac{27}{40}\)]

Q7) 5\(\frac{1}{2}\) - 1\(\frac{1}{3}\) = [ 4\(\frac{1}{6}\)]

Q8) \(\frac{4}{5}\) - \(\frac{1}{3}\) = [ \(\frac{7}{15}\)]

Q8) \(\frac{1}{4}\) \(\div\) \(\frac{1}{2}\) = [ \(\frac{1}{2}\)]

Q8) 1\(\frac{1}{7}\) \(\div\) 2\(\frac{2}{3}\) = [ \(\frac{3}{7}\)]

Q9) \(\frac{7}{9}\) - \(\frac{2}{3}\) = [ \(\frac{1}{9}\)]

Q9) \(\frac{1}{4}\) \(\div\) \(\frac{2}{5}\) = [ \(\frac{5}{8}\)]

Q9) 1\(\frac{1}{2}\) x 1\(\frac{1}{8}\) = [ 1\(\frac{11}{16}\)]

Q10) \(\frac{1}{2}\) - \(\frac{1}{3}\) = [ \(\frac{1}{6}\)]

Q10) \(\frac{7}{9}\) \(\div\) \(\frac{2}{3}\) = [ 1\(\frac{1}{6}\)]

Q10) 2\(\frac{1}{3}\) - 1\(\frac{9}{10}\) = [ \(\frac{13}{30}\)]