Q1) \(\frac{7}{8}\) - \(\frac{2}{5}\) = [ \(\frac{19}{40}\)]
Q1) \(\frac{2}{5}\) \(\div\) \(\frac{1}{2}\) = [ \(\frac{4}{5}\)]
Q1) 1\(\frac{1}{9}\) x 1\(\frac{1}{9}\) = [ 1\(\frac{19}{81}\)]
Q2) \(\frac{1}{3}\) + \(\frac{3}{10}\) = [ \(\frac{19}{30}\)]
Q2) \(\frac{1}{2}\) x \(\frac{1}{2}\) = [ \(\frac{1}{4}\)]
Q2) 1\(\frac{2}{5}\) x 1\(\frac{1}{2}\) = [ 2\(\frac{1}{10}\)]
Q3) \(\frac{1}{2}\) - \(\frac{3}{7}\) = [ \(\frac{1}{14}\)]
Q3) \(\frac{3}{8}\) \(\div\) \(\frac{4}{5}\) = [ \(\frac{15}{32}\)]
Q3) \(\frac{1}{7}\) + \(\frac{1}{3}\) = [ \(\frac{10}{21}\)]
Q4) \(\frac{1}{2}\) + \(\frac{2}{9}\) = [ \(\frac{13}{18}\)]
Q4) \(\frac{2}{3}\) x \(\frac{2}{5}\) = [ \(\frac{4}{15}\)]
Q4) \(\frac{1}{4}\) + \(\frac{9}{14}\) = [ \(\frac{25}{28}\)]
Q5) \(\frac{3}{7}\) + \(\frac{1}{2}\) = [ \(\frac{13}{14}\)]
Q5) \(\frac{5}{9}\) \(\div\) \(\frac{2}{5}\) = [ 1\(\frac{7}{18}\)]
Q5) \(\frac{5}{12}\) + \(\frac{1}{7}\) = [ \(\frac{47}{84}\)]
Q6) \(\frac{5}{6}\) - \(\frac{1}{4}\) = [ \(\frac{7}{12}\)]
Q6) \(\frac{8}{9}\) \(\div\) \(\frac{9}{10}\) = [ \(\frac{80}{81}\)]
Q6) 1\(\frac{4}{5}\) \(\div\) 1\(\frac{1}{3}\) = [ 1\(\frac{7}{20}\)]
Q7) \(\frac{2}{3}\) - \(\frac{1}{4}\) = [ \(\frac{5}{12}\)]
Q7) \(\frac{1}{4}\) x \(\frac{3}{10}\) = [ \(\frac{3}{40}\)]
Q7) 1\(\frac{2}{3}\) x 1\(\frac{1}{7}\) = [ 1\(\frac{19}{21}\)]
Q8) \(\frac{2}{3}\) - \(\frac{1}{2}\) = [ \(\frac{1}{6}\)]
Q8) \(\frac{3}{5}\) x \(\frac{2}{9}\) = [ \(\frac{2}{15}\)]
Q8) 4\(\frac{1}{2}\) \(\div\) 2\(\frac{2}{3}\) = [ 1\(\frac{11}{16}\)]
Q9) \(\frac{3}{4}\) - \(\frac{1}{2}\) = [ \(\frac{1}{4}\)]
Q9) \(\frac{1}{3}\) x \(\frac{8}{9}\) = [ \(\frac{8}{27}\)]
Q9) 1\(\frac{1}{6}\) \(\div\) 3\(\frac{1}{2}\) = [ \(\frac{1}{3}\)]
Q10) \(\frac{3}{4}\) - \(\frac{1}{2}\) = [ \(\frac{1}{4}\)]
Q10) \(\frac{1}{2}\) x \(\frac{8}{9}\) = [ \(\frac{4}{9}\)]
Q10) 2\(\frac{1}{3}\) - 1\(\frac{3}{4}\) = [ \(\frac{7}{12}\)]