Q1) \(\frac{3}{8}\) x \(\frac{2}{5}\) = [ \(\frac{3}{20}\)]
Q1) \(\frac{4}{7}\) \(\div\) \(\frac{3}{7}\) = [ 1\(\frac{1}{3}\)]
Q1) 1\(\frac{1}{6}\) \(\div\) 1\(\frac{3}{5}\) = [ \(\frac{35}{48}\)]
Q2) \(\frac{3}{8}\) x \(\frac{1}{3}\) = [ \(\frac{1}{8}\)]
Q2) \(\frac{2}{9}\) \(\div\) \(\frac{2}{11}\) = [ 1\(\frac{2}{9}\)]
Q2) 2\(\frac{1}{2}\) \(\div\) 2\(\frac{1}{3}\) = [ 1\(\frac{1}{14}\)]
Q3) \(\frac{2}{7}\) x \(\frac{1}{3}\) = [ \(\frac{2}{21}\)]
Q3) \(\frac{2}{5}\) \(\div\) \(\frac{1}{2}\) = [ \(\frac{4}{5}\)]
Q3) 1\(\frac{2}{7}\) \(\div\) 1\(\frac{2}{3}\) = [ \(\frac{27}{35}\)]
Q4) \(\frac{1}{3}\) x \(\frac{3}{4}\) = [ \(\frac{1}{4}\)]
Q4) \(\frac{3}{20}\) \(\div\) \(\frac{1}{2}\) = [ \(\frac{3}{10}\)]
Q4) 1\(\frac{3}{5}\) x 1\(\frac{1}{3}\) = [ 2\(\frac{2}{15}\)]
Q5) \(\frac{4}{5}\) \(\div\) \(\frac{1}{2}\) = [ 1\(\frac{3}{5}\)]
Q5) \(\frac{10}{19}\) \(\div\) \(\frac{3}{14}\) = [ 2\(\frac{26}{57}\)]
Q5) 3\(\frac{1}{3}\) \(\div\) 1\(\frac{2}{7}\) = [ 2\(\frac{16}{27}\)]
Q6) \(\frac{4}{7}\) x \(\frac{3}{5}\) = [ \(\frac{12}{35}\)]
Q6) \(\frac{5}{11}\) x \(\frac{2}{5}\) = [ \(\frac{2}{11}\)]
Q6) 1\(\frac{2}{3}\) x 1\(\frac{1}{3}\) = [ 2\(\frac{2}{9}\)]
Q7) \(\frac{2}{3}\) x \(\frac{2}{5}\) = [ \(\frac{4}{15}\)]
Q7) \(\frac{1}{4}\) \(\div\) \(\frac{2}{9}\) = [ 1\(\frac{1}{8}\)]
Q7) 1\(\frac{1}{7}\) \(\div\) 4\(\frac{1}{2}\) = [ \(\frac{16}{63}\)]
Q8) \(\frac{5}{8}\) \(\div\) \(\frac{2}{3}\) = [ \(\frac{15}{16}\)]
Q8) \(\frac{1}{8}\) x \(\frac{4}{15}\) = [ \(\frac{1}{30}\)]
Q8) 1\(\frac{2}{3}\) x 2\(\frac{1}{3}\) = [ 3\(\frac{8}{9}\)]
Q9) \(\frac{3}{7}\) \(\div\) \(\frac{3}{10}\) = [ 1\(\frac{3}{7}\)]
Q9) \(\frac{1}{3}\) x \(\frac{2}{3}\) = [ \(\frac{2}{9}\)]
Q9) 1\(\frac{1}{3}\) \(\div\) 2\(\frac{1}{2}\) = [ \(\frac{8}{15}\)]
Q10) \(\frac{3}{5}\) x \(\frac{2}{9}\) = [ \(\frac{2}{15}\)]
Q10) \(\frac{3}{14}\) x \(\frac{2}{3}\) = [ \(\frac{1}{7}\)]
Q10) 1\(\frac{1}{4}\) x 1\(\frac{4}{5}\) = [ 2\(\frac{1}{4}\)]