Q1) \(\frac{1}{3}\) x \(\frac{9}{10}\) = [ \(\frac{3}{10}\)]
Q1) \(\frac{3}{4}\) \(\div\) \(\frac{2}{3}\) = [ 1\(\frac{1}{8}\)]
Q1) 1\(\frac{1}{7}\) \(\div\) 2\(\frac{1}{2}\) = [ \(\frac{16}{35}\)]
Q2) \(\frac{3}{7}\) \(\div\) \(\frac{2}{5}\) = [ 1\(\frac{1}{14}\)]
Q2) \(\frac{8}{9}\) \(\div\) \(\frac{2}{3}\) = [ 1\(\frac{1}{3}\)]
Q2) 1\(\frac{1}{3}\) x 3\(\frac{1}{2}\) = [ 4\(\frac{2}{3}\)]
Q3) \(\frac{3}{8}\) \(\div\) \(\frac{9}{10}\) = [ \(\frac{5}{12}\)]
Q3) \(\frac{2}{5}\) x \(\frac{1}{3}\) = [ \(\frac{2}{15}\)]
Q3) 1\(\frac{2}{3}\) \(\div\) 1\(\frac{3}{4}\) = [ \(\frac{20}{21}\)]
Q4) \(\frac{1}{3}\) \(\div\) \(\frac{2}{3}\) = [ \(\frac{1}{2}\)]
Q4) \(\frac{3}{4}\) x \(\frac{5}{12}\) = [ \(\frac{5}{16}\)]
Q4) 4\(\frac{1}{2}\) \(\div\) 1\(\frac{1}{4}\) = [ 3\(\frac{3}{5}\)]
Q5) \(\frac{5}{7}\) x \(\frac{3}{8}\) = [ \(\frac{15}{56}\)]
Q5) \(\frac{10}{11}\) \(\div\) \(\frac{1}{2}\) = [ 1\(\frac{9}{11}\)]
Q5) 2\(\frac{1}{3}\) \(\div\) 2\(\frac{2}{3}\) = [ \(\frac{7}{8}\)]
Q6) \(\frac{2}{3}\) x \(\frac{7}{9}\) = [ \(\frac{14}{27}\)]
Q6) \(\frac{1}{3}\) \(\div\) \(\frac{1}{2}\) = [ \(\frac{2}{3}\)]
Q6) 2\(\frac{1}{2}\) x 2\(\frac{2}{3}\) = [ 6\(\frac{2}{3}\)]
Q7) \(\frac{3}{7}\) x \(\frac{1}{2}\) = [ \(\frac{3}{14}\)]
Q7) \(\frac{6}{13}\) \(\div\) \(\frac{1}{7}\) = [ 3\(\frac{3}{13}\)]
Q7) 3\(\frac{1}{3}\) \(\div\) 1\(\frac{2}{3}\) = [ 2]
Q8) \(\frac{2}{9}\) \(\div\) \(\frac{2}{3}\) = [ \(\frac{1}{3}\)]
Q8) \(\frac{2}{13}\) x \(\frac{2}{5}\) = [ \(\frac{4}{65}\)]
Q8) 1\(\frac{1}{4}\) x 1\(\frac{4}{5}\) = [ 2\(\frac{1}{4}\)]
Q9) \(\frac{3}{10}\) \(\div\) \(\frac{1}{3}\) = [ \(\frac{9}{10}\)]
Q9) \(\frac{3}{10}\) x \(\frac{2}{19}\) = [ \(\frac{3}{95}\)]
Q9) 1\(\frac{1}{3}\) \(\div\) 1\(\frac{2}{3}\) = [ \(\frac{4}{5}\)]
Q10) \(\frac{1}{2}\) \(\div\) \(\frac{4}{5}\) = [ \(\frac{5}{8}\)]
Q10) \(\frac{9}{16}\) x \(\frac{7}{20}\) = [ \(\frac{63}{320}\)]
Q10) 1\(\frac{1}{3}\) x 4\(\frac{1}{2}\) = [ 6]