Mr Daniels Maths
Fraction Subtraction

Set 1

Set 2

Set 3

Q1) \(\frac{2}{3}\) - \(\frac{3}{8}\) = [ \(\frac{7}{24}\)]

Q1) 1\(\frac{1}{8}\) - \(\frac{1}{2}\) = [ \(\frac{5}{8}\)]

Q1) 2\(\frac{1}{4}\) - 1\(\frac{2}{3}\) = [ \(\frac{7}{12}\)]

Q2) \(\frac{2}{3}\) - \(\frac{2}{9}\) = [ \(\frac{4}{9}\)]

Q2) 1\(\frac{1}{4}\) - \(\frac{3}{10}\) = [ \(\frac{19}{20}\)]

Q2) 3\(\frac{1}{4}\) - 1\(\frac{5}{12}\) = [ 1\(\frac{5}{6}\)]

Q3) \(\frac{5}{6}\) - \(\frac{4}{7}\) = [ \(\frac{11}{42}\)]

Q3) 1\(\frac{2}{3}\) - \(\frac{3}{4}\) = [ \(\frac{11}{12}\)]

Q3) 3\(\frac{1}{4}\) - 1\(\frac{1}{7}\) = [ 2\(\frac{3}{28}\)]

Q4) \(\frac{6}{7}\) - \(\frac{1}{2}\) = [ \(\frac{5}{14}\)]

Q4) 1\(\frac{1}{9}\) - \(\frac{1}{2}\) = [ \(\frac{11}{18}\)]

Q4) 3\(\frac{1}{2}\) - 2\(\frac{1}{9}\) = [ 1\(\frac{7}{18}\)]

Q5) \(\frac{2}{5}\) - \(\frac{2}{7}\) = [ \(\frac{4}{35}\)]

Q5) 1\(\frac{1}{4}\) - \(\frac{3}{4}\) = [ \(\frac{1}{2}\)]

Q5) 2\(\frac{1}{3}\) - 1\(\frac{9}{17}\) = [ \(\frac{41}{51}\)]

Q6) \(\frac{3}{5}\) - \(\frac{3}{8}\) = [ \(\frac{9}{40}\)]

Q6) 1\(\frac{1}{6}\) - \(\frac{1}{2}\) = [ \(\frac{2}{3}\)]

Q6) 2\(\frac{1}{2}\) - 1\(\frac{1}{5}\) = [ 1\(\frac{3}{10}\)]

Q7) \(\frac{3}{7}\) - \(\frac{1}{3}\) = [ \(\frac{2}{21}\)]

Q7) 1\(\frac{1}{3}\) - \(\frac{5}{7}\) = [ \(\frac{13}{21}\)]

Q7) 2\(\frac{1}{2}\) - 1\(\frac{2}{19}\) = [ 1\(\frac{15}{38}\)]

Q8) \(\frac{3}{4}\) - \(\frac{1}{4}\) = [ \(\frac{1}{2}\)]

Q8) 1\(\frac{2}{7}\) - \(\frac{2}{3}\) = [ \(\frac{13}{21}\)]

Q8) 3\(\frac{2}{3}\) - 1\(\frac{4}{13}\) = [ 2\(\frac{14}{39}\)]

Q9) \(\frac{4}{7}\) - \(\frac{3}{7}\) = [ \(\frac{1}{7}\)]

Q9) 1\(\frac{1}{7}\) - \(\frac{1}{2}\) = [ \(\frac{9}{14}\)]

Q9) 3\(\frac{1}{2}\) - 1\(\frac{9}{13}\) = [ 1\(\frac{21}{26}\)]

Q10) \(\frac{6}{7}\) - \(\frac{1}{3}\) = [ \(\frac{11}{21}\)]

Q10) 1\(\frac{2}{5}\) - \(\frac{1}{2}\) = [ \(\frac{9}{10}\)]

Q10) 1\(\frac{6}{7}\) - 1\(\frac{2}{5}\) = [ \(\frac{16}{35}\)]