Q1) \(\frac{2}{3}\) - \(\frac{1}{2}\) = [ \(\frac{1}{6}\)]
Q1) 1\(\frac{1}{4}\) - \(\frac{4}{5}\) = [ \(\frac{9}{20}\)]
Q1) 1\(\frac{1}{2}\) - 1\(\frac{2}{5}\) = [ \(\frac{1}{10}\)]
Q2) \(\frac{1}{2}\) - \(\frac{1}{5}\) = [ \(\frac{3}{10}\)]
Q2) 1\(\frac{1}{9}\) - \(\frac{1}{2}\) = [ \(\frac{11}{18}\)]
Q2) 3\(\frac{1}{2}\) - 1\(\frac{3}{7}\) = [ 2\(\frac{1}{14}\)]
Q3) \(\frac{5}{7}\) - \(\frac{2}{3}\) = [ \(\frac{1}{21}\)]
Q3) 1\(\frac{1}{9}\) - \(\frac{2}{3}\) = [ \(\frac{4}{9}\)]
Q3) 2\(\frac{1}{3}\) - 1\(\frac{5}{7}\) = [ \(\frac{13}{21}\)]
Q4) \(\frac{3}{8}\) - \(\frac{1}{3}\) = [ \(\frac{1}{24}\)]
Q4) 1\(\frac{1}{8}\) - \(\frac{1}{2}\) = [ \(\frac{5}{8}\)]
Q4) 2\(\frac{1}{3}\) - 2\(\frac{1}{8}\) = [ \(\frac{5}{24}\)]
Q5) \(\frac{3}{4}\) - \(\frac{1}{2}\) = [ \(\frac{1}{4}\)]
Q5) 1\(\frac{1}{5}\) - \(\frac{3}{4}\) = [ \(\frac{9}{20}\)]
Q5) 2\(\frac{1}{2}\) - 1\(\frac{1}{5}\) = [ 1\(\frac{3}{10}\)]
Q6) \(\frac{1}{2}\) - \(\frac{2}{7}\) = [ \(\frac{3}{14}\)]
Q6) 1\(\frac{1}{7}\) - \(\frac{2}{5}\) = [ \(\frac{26}{35}\)]
Q6) 5\(\frac{1}{2}\) - 1\(\frac{8}{11}\) = [ 3\(\frac{17}{22}\)]
Q7) \(\frac{6}{7}\) - \(\frac{1}{3}\) = [ \(\frac{11}{21}\)]
Q7) 1\(\frac{1}{2}\) - \(\frac{3}{4}\) = [ \(\frac{3}{4}\)]
Q7) 2\(\frac{1}{6}\) - 1\(\frac{1}{3}\) = [ \(\frac{5}{6}\)]
Q8) \(\frac{4}{5}\) - \(\frac{3}{4}\) = [ \(\frac{1}{20}\)]
Q8) 1\(\frac{1}{8}\) - \(\frac{2}{3}\) = [ \(\frac{11}{24}\)]
Q8) 3\(\frac{2}{3}\) - 1\(\frac{4}{13}\) = [ 2\(\frac{14}{39}\)]
Q9) \(\frac{4}{5}\) - \(\frac{3}{8}\) = [ \(\frac{17}{40}\)]
Q9) 1\(\frac{1}{7}\) - \(\frac{1}{2}\) = [ \(\frac{9}{14}\)]
Q9) 3\(\frac{1}{4}\) - 1\(\frac{1}{7}\) = [ 2\(\frac{3}{28}\)]
Q10) \(\frac{8}{9}\) - \(\frac{2}{3}\) = [ \(\frac{2}{9}\)]
Q10) 1\(\frac{1}{4}\) - \(\frac{1}{2}\) = [ \(\frac{3}{4}\)]
Q10) 2\(\frac{2}{3}\) - 1\(\frac{4}{11}\) = [ 1\(\frac{10}{33}\)]