Q1) \(\frac{4}{5}\) - \(\frac{1}{2}\) = [ \(\frac{3}{10}\)]
Q1) 1\(\frac{1}{3}\) - \(\frac{5}{7}\) = [ \(\frac{13}{21}\)]
Q1) 4\(\frac{1}{2}\) - 1\(\frac{5}{18}\) = [ 3\(\frac{2}{9}\)]
Q2) \(\frac{2}{3}\) - \(\frac{4}{9}\) = [ \(\frac{2}{9}\)]
Q2) 1\(\frac{1}{7}\) - \(\frac{2}{3}\) = [ \(\frac{10}{21}\)]
Q2) 2\(\frac{1}{2}\) - 1\(\frac{1}{2}\) = [ 1]
Q3) \(\frac{4}{5}\) - \(\frac{3}{8}\) = [ \(\frac{17}{40}\)]
Q3) 1\(\frac{1}{2}\) - \(\frac{5}{6}\) = [ \(\frac{2}{3}\)]
Q3) 3\(\frac{1}{4}\) - 1\(\frac{3}{4}\) = [ 1\(\frac{1}{2}\)]
Q4) \(\frac{3}{7}\) - \(\frac{2}{7}\) = [ \(\frac{1}{7}\)]
Q4) 1\(\frac{3}{4}\) - \(\frac{8}{9}\) = [ \(\frac{31}{36}\)]
Q4) 3\(\frac{1}{2}\) - 1\(\frac{8}{19}\) = [ 2\(\frac{3}{38}\)]
Q5) \(\frac{6}{7}\) - \(\frac{2}{5}\) = [ \(\frac{16}{35}\)]
Q5) 1\(\frac{2}{7}\) - \(\frac{5}{6}\) = [ \(\frac{19}{42}\)]
Q5) 1\(\frac{2}{3}\) - 1\(\frac{5}{19}\) = [ \(\frac{23}{57}\)]
Q6) \(\frac{9}{10}\) - \(\frac{3}{4}\) = [ \(\frac{3}{20}\)]
Q6) 1\(\frac{2}{5}\) - \(\frac{7}{8}\) = [ \(\frac{21}{40}\)]
Q6) 3\(\frac{1}{2}\) - 2\(\frac{1}{2}\) = [ 1]
Q7) \(\frac{4}{5}\) - \(\frac{1}{3}\) = [ \(\frac{7}{15}\)]
Q7) 1\(\frac{1}{4}\) - \(\frac{1}{2}\) = [ \(\frac{3}{4}\)]
Q7) 1\(\frac{2}{3}\) - 1\(\frac{1}{3}\) = [ \(\frac{1}{3}\)]
Q8) \(\frac{3}{4}\) - \(\frac{1}{2}\) = [ \(\frac{1}{4}\)]
Q8) 1\(\frac{1}{6}\) - \(\frac{3}{5}\) = [ \(\frac{17}{30}\)]
Q8) 2\(\frac{2}{5}\) - 1\(\frac{4}{11}\) = [ 1\(\frac{2}{55}\)]
Q9) \(\frac{2}{3}\) - \(\frac{5}{9}\) = [ \(\frac{1}{9}\)]
Q9) 1\(\frac{2}{7}\) - \(\frac{1}{2}\) = [ \(\frac{11}{14}\)]
Q9) 3\(\frac{1}{4}\) - 1\(\frac{1}{3}\) = [ 1\(\frac{11}{12}\)]
Q10) \(\frac{4}{5}\) - \(\frac{3}{5}\) = [ \(\frac{1}{5}\)]
Q10) 1\(\frac{1}{6}\) - \(\frac{3}{4}\) = [ \(\frac{5}{12}\)]
Q10) 2\(\frac{2}{3}\) - 1\(\frac{5}{11}\) = [ 1\(\frac{7}{33}\)]