Mr Daniels Maths
Fraction Subtraction

Set 1

Set 2

Set 3

Q1) \(\frac{4}{5}\) - \(\frac{1}{2}\) = [ \(\frac{3}{10}\)]

Q1) 1\(\frac{1}{3}\) - \(\frac{5}{7}\) = [ \(\frac{13}{21}\)]

Q1) 4\(\frac{1}{2}\) - 1\(\frac{5}{18}\) = [ 3\(\frac{2}{9}\)]

Q2) \(\frac{2}{3}\) - \(\frac{4}{9}\) = [ \(\frac{2}{9}\)]

Q2) 1\(\frac{1}{7}\) - \(\frac{2}{3}\) = [ \(\frac{10}{21}\)]

Q2) 2\(\frac{1}{2}\) - 1\(\frac{1}{2}\) = [ 1]

Q3) \(\frac{4}{5}\) - \(\frac{3}{8}\) = [ \(\frac{17}{40}\)]

Q3) 1\(\frac{1}{2}\) - \(\frac{5}{6}\) = [ \(\frac{2}{3}\)]

Q3) 3\(\frac{1}{4}\) - 1\(\frac{3}{4}\) = [ 1\(\frac{1}{2}\)]

Q4) \(\frac{3}{7}\) - \(\frac{2}{7}\) = [ \(\frac{1}{7}\)]

Q4) 1\(\frac{3}{4}\) - \(\frac{8}{9}\) = [ \(\frac{31}{36}\)]

Q4) 3\(\frac{1}{2}\) - 1\(\frac{8}{19}\) = [ 2\(\frac{3}{38}\)]

Q5) \(\frac{6}{7}\) - \(\frac{2}{5}\) = [ \(\frac{16}{35}\)]

Q5) 1\(\frac{2}{7}\) - \(\frac{5}{6}\) = [ \(\frac{19}{42}\)]

Q5) 1\(\frac{2}{3}\) - 1\(\frac{5}{19}\) = [ \(\frac{23}{57}\)]

Q6) \(\frac{9}{10}\) - \(\frac{3}{4}\) = [ \(\frac{3}{20}\)]

Q6) 1\(\frac{2}{5}\) - \(\frac{7}{8}\) = [ \(\frac{21}{40}\)]

Q6) 3\(\frac{1}{2}\) - 2\(\frac{1}{2}\) = [ 1]

Q7) \(\frac{4}{5}\) - \(\frac{1}{3}\) = [ \(\frac{7}{15}\)]

Q7) 1\(\frac{1}{4}\) - \(\frac{1}{2}\) = [ \(\frac{3}{4}\)]

Q7) 1\(\frac{2}{3}\) - 1\(\frac{1}{3}\) = [ \(\frac{1}{3}\)]

Q8) \(\frac{3}{4}\) - \(\frac{1}{2}\) = [ \(\frac{1}{4}\)]

Q8) 1\(\frac{1}{6}\) - \(\frac{3}{5}\) = [ \(\frac{17}{30}\)]

Q8) 2\(\frac{2}{5}\) - 1\(\frac{4}{11}\) = [ 1\(\frac{2}{55}\)]

Q9) \(\frac{2}{3}\) - \(\frac{5}{9}\) = [ \(\frac{1}{9}\)]

Q9) 1\(\frac{2}{7}\) - \(\frac{1}{2}\) = [ \(\frac{11}{14}\)]

Q9) 3\(\frac{1}{4}\) - 1\(\frac{1}{3}\) = [ 1\(\frac{11}{12}\)]

Q10) \(\frac{4}{5}\) - \(\frac{3}{5}\) = [ \(\frac{1}{5}\)]

Q10) 1\(\frac{1}{6}\) - \(\frac{3}{4}\) = [ \(\frac{5}{12}\)]

Q10) 2\(\frac{2}{3}\) - 1\(\frac{5}{11}\) = [ 1\(\frac{7}{33}\)]