Mr Daniels Maths
Fraction Subtraction Part 2

Set 1

Set 2

Set 3

Q1) \(\frac{4}{5}\) - \(\frac{5}{9}\) = \({... - ...}\over45\) = \({...}\over{...}\) [ \(\frac{11}{45}\)]

Q1) \(\frac{5}{6}\) - \(\frac{1}{3}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{2}\)]

Q1) \(\frac{5}{6}\) - \(\frac{1}{4}\) = [ \(\frac{7}{12}\)]

Q2) \(\frac{2}{3}\) - \(\frac{4}{9}\) = \({... - ...}\over9\) = \({...}\over{...}\) [ \(\frac{2}{9}\)]

Q2) \(\frac{2}{3}\) - \(\frac{2}{7}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{8}{21}\)]

Q2) \(\frac{3}{4}\) - \(\frac{2}{7}\) = [ \(\frac{13}{28}\)]

Q3) \(\frac{4}{5}\) - \(\frac{2}{7}\) = \({... - ...}\over35\) = \({...}\over{...}\) [ \(\frac{18}{35}\)]

Q3) \(\frac{4}{7}\) - \(\frac{3}{10}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{19}{70}\)]

Q3) \(\frac{1}{2}\) - \(\frac{2}{9}\) = [ \(\frac{5}{18}\)]

Q4) \(\frac{3}{4}\) - \(\frac{4}{9}\) = \({... - ...}\over36\) = \({...}\over{...}\) [ \(\frac{11}{36}\)]

Q4) \(\frac{5}{6}\) - \(\frac{3}{5}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{7}{30}\)]

Q4) \(\frac{4}{5}\) - \(\frac{2}{3}\) = [ \(\frac{2}{15}\)]

Q5) \(\frac{7}{8}\) - \(\frac{2}{9}\) = \({... - ...}\over72\) = \({...}\over{...}\) [ \(\frac{47}{72}\)]

Q5) \(\frac{3}{4}\) - \(\frac{2}{5}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{7}{20}\)]

Q5) \(\frac{2}{5}\) - \(\frac{1}{4}\) = [ \(\frac{3}{20}\)]

Q6) \(\frac{7}{8}\) - \(\frac{4}{7}\) = \({... - ...}\over56\) = \({...}\over{...}\) [ \(\frac{17}{56}\)]

Q6) \(\frac{5}{9}\) - \(\frac{3}{8}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{13}{72}\)]

Q6) \(\frac{1}{2}\) - \(\frac{2}{9}\) = [ \(\frac{5}{18}\)]

Q7) \(\frac{7}{8}\) - \(\frac{4}{7}\) = \({... - ...}\over56\) = \({...}\over{...}\) [ \(\frac{17}{56}\)]

Q7) \(\frac{3}{4}\) - \(\frac{3}{5}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{3}{20}\)]

Q7) \(\frac{2}{3}\) - \(\frac{1}{2}\) = [ \(\frac{1}{6}\)]

Q8) \(\frac{5}{6}\) - \(\frac{5}{9}\) = \({... - ...}\over18\) = \({...}\over{...}\) [ \(\frac{5}{18}\)]

Q8) \(\frac{2}{3}\) - \(\frac{1}{2}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{6}\)]

Q8) \(\frac{6}{7}\) - \(\frac{3}{4}\) = [ \(\frac{3}{28}\)]

Q9) \(\frac{7}{8}\) - \(\frac{3}{7}\) = \({... - ...}\over56\) = \({...}\over{...}\) [ \(\frac{25}{56}\)]

Q9) \(\frac{9}{10}\) - \(\frac{5}{6}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{15}\)]

Q9) \(\frac{3}{4}\) - \(\frac{1}{2}\) = [ \(\frac{1}{4}\)]

Q10) \(\frac{5}{6}\) - \(\frac{7}{9}\) = \({... - ...}\over18\) = \({...}\over{...}\) [ \(\frac{1}{18}\)]

Q10) \(\frac{3}{4}\) - \(\frac{3}{5}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{3}{20}\)]

Q10) \(\frac{4}{5}\) - \(\frac{1}{3}\) = [ \(\frac{7}{15}\)]