Mr Daniels Maths
Fraction Subtraction Part 2

Set 1

Set 2

Set 3

Q1) \(\frac{8}{9}\) - \(\frac{5}{7}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{11}{63}\)]

Q1) \(\frac{2}{3}\) - \(\frac{1}{2}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{6}\)]

Q1) \(\frac{4}{7}\) - \(\frac{3}{7}\) = [ \(\frac{1}{7}\)]

Q2) \(\frac{5}{7}\) - \(\frac{4}{9}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{17}{63}\)]

Q2) \(\frac{5}{7}\) - \(\frac{5}{8}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{5}{56}\)]

Q2) \(\frac{2}{3}\) - \(\frac{2}{5}\) = [ \(\frac{4}{15}\)]

Q3) \(\frac{2}{5}\) - \(\frac{2}{9}\) = \({... - ...}\over45\) = \({...}\over{...}\) [ \(\frac{8}{45}\)]

Q3) \(\frac{2}{3}\) - \(\frac{5}{8}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{24}\)]

Q3) \(\frac{7}{8}\) - \(\frac{2}{3}\) = [ \(\frac{5}{24}\)]

Q4) \(\frac{2}{3}\) - \(\frac{3}{7}\) = \({... - ...}\over21\) = \({...}\over{...}\) [ \(\frac{5}{21}\)]

Q4) \(\frac{7}{8}\) - \(\frac{3}{7}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{25}{56}\)]

Q4) \(\frac{3}{4}\) - \(\frac{5}{9}\) = [ \(\frac{7}{36}\)]

Q5) \(\frac{3}{5}\) - \(\frac{4}{9}\) = \({... - ...}\over45\) = \({...}\over{...}\) [ \(\frac{7}{45}\)]

Q5) \(\frac{8}{9}\) - \(\frac{1}{4}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{23}{36}\)]

Q5) \(\frac{5}{7}\) - \(\frac{2}{5}\) = [ \(\frac{11}{35}\)]

Q6) \(\frac{6}{7}\) - \(\frac{5}{9}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{19}{63}\)]

Q6) \(\frac{5}{7}\) - \(\frac{1}{5}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{18}{35}\)]

Q6) \(\frac{2}{3}\) - \(\frac{2}{7}\) = [ \(\frac{8}{21}\)]

Q7) \(\frac{2}{7}\) - \(\frac{2}{9}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{4}{63}\)]

Q7) \(\frac{8}{9}\) - \(\frac{4}{5}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{4}{45}\)]

Q7) \(\frac{1}{2}\) - \(\frac{1}{3}\) = [ \(\frac{1}{6}\)]

Q8) \(\frac{4}{7}\) - \(\frac{4}{9}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{8}{63}\)]

Q8) \(\frac{3}{5}\) - \(\frac{1}{3}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{4}{15}\)]

Q8) \(\frac{4}{5}\) - \(\frac{5}{9}\) = [ \(\frac{11}{45}\)]

Q9) \(\frac{9}{10}\) - \(\frac{2}{7}\) = \({... - ...}\over70\) = \({...}\over{...}\) [ \(\frac{43}{70}\)]

Q9) \(\frac{2}{3}\) - \(\frac{3}{7}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{5}{21}\)]

Q9) \(\frac{2}{5}\) - \(\frac{2}{7}\) = [ \(\frac{4}{35}\)]

Q10) \(\frac{7}{9}\) - \(\frac{3}{4}\) = \({... - ...}\over36\) = \({...}\over{...}\) [ \(\frac{1}{36}\)]

Q10) \(\frac{3}{5}\) - \(\frac{1}{2}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{10}\)]

Q10) \(\frac{4}{5}\) - \(\frac{7}{9}\) = [ \(\frac{1}{45}\)]