Mr Daniels Maths
Fraction Subtraction Part 2

Set 1

Set 2

Set 3

Q1) \(\frac{5}{8}\) - \(\frac{3}{7}\) = \({... - ...}\over56\) = \({...}\over{...}\) [ \(\frac{11}{56}\)]

Q1) \(\frac{4}{5}\) - \(\frac{3}{4}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{20}\)]

Q1) \(\frac{3}{5}\) - \(\frac{1}{4}\) = [ \(\frac{7}{20}\)]

Q2) \(\frac{2}{5}\) - \(\frac{2}{9}\) = \({... - ...}\over45\) = \({...}\over{...}\) [ \(\frac{8}{45}\)]

Q2) \(\frac{3}{4}\) - \(\frac{5}{7}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{28}\)]

Q2) \(\frac{2}{3}\) - \(\frac{1}{5}\) = [ \(\frac{7}{15}\)]

Q3) \(\frac{7}{9}\) - \(\frac{3}{4}\) = \({... - ...}\over36\) = \({...}\over{...}\) [ \(\frac{1}{36}\)]

Q3) \(\frac{5}{7}\) - \(\frac{1}{4}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{13}{28}\)]

Q3) \(\frac{2}{3}\) - \(\frac{4}{7}\) = [ \(\frac{2}{21}\)]

Q4) \(\frac{2}{3}\) - \(\frac{5}{9}\) = \({... - ...}\over9\) = \({...}\over{...}\) [ \(\frac{1}{9}\)]

Q4) \(\frac{6}{7}\) - \(\frac{2}{3}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{4}{21}\)]

Q4) \(\frac{6}{7}\) - \(\frac{2}{5}\) = [ \(\frac{16}{35}\)]

Q5) \(\frac{3}{4}\) - \(\frac{3}{5}\) = \({... - ...}\over20\) = \({...}\over{...}\) [ \(\frac{3}{20}\)]

Q5) \(\frac{7}{9}\) - \(\frac{3}{10}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{43}{90}\)]

Q5) \(\frac{6}{7}\) - \(\frac{2}{5}\) = [ \(\frac{16}{35}\)]

Q6) \(\frac{8}{9}\) - \(\frac{3}{10}\) = \({... - ...}\over90\) = \({...}\over{...}\) [ \(\frac{53}{90}\)]

Q6) \(\frac{1}{3}\) - \(\frac{2}{9}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{9}\)]

Q6) \(\frac{1}{2}\) - \(\frac{2}{7}\) = [ \(\frac{3}{14}\)]

Q7) \(\frac{7}{9}\) - \(\frac{4}{7}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{13}{63}\)]

Q7) \(\frac{3}{4}\) - \(\frac{1}{3}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{5}{12}\)]

Q7) \(\frac{6}{7}\) - \(\frac{1}{2}\) = [ \(\frac{5}{14}\)]

Q8) \(\frac{7}{10}\) - \(\frac{4}{7}\) = \({... - ...}\over70\) = \({...}\over{...}\) [ \(\frac{9}{70}\)]

Q8) \(\frac{7}{10}\) - \(\frac{5}{8}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{3}{40}\)]

Q8) \(\frac{4}{5}\) - \(\frac{3}{8}\) = [ \(\frac{17}{40}\)]

Q9) \(\frac{4}{5}\) - \(\frac{4}{7}\) = \({... - ...}\over35\) = \({...}\over{...}\) [ \(\frac{8}{35}\)]

Q9) \(\frac{8}{9}\) - \(\frac{1}{4}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{23}{36}\)]

Q9) \(\frac{4}{5}\) - \(\frac{1}{2}\) = [ \(\frac{3}{10}\)]

Q10) \(\frac{3}{5}\) - \(\frac{4}{9}\) = \({... - ...}\over45\) = \({...}\over{...}\) [ \(\frac{7}{45}\)]

Q10) \(\frac{6}{7}\) - \(\frac{1}{4}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{17}{28}\)]

Q10) \(\frac{8}{9}\) - \(\frac{2}{3}\) = [ \(\frac{2}{9}\)]