Q1) \(\frac{8}{9}\) - \(\frac{5}{7}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{11}{63}\)]
Q1) \(\frac{2}{3}\) - \(\frac{1}{2}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{6}\)]
Q1) \(\frac{4}{7}\) - \(\frac{3}{7}\) = [ \(\frac{1}{7}\)]
Q2) \(\frac{5}{7}\) - \(\frac{4}{9}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{17}{63}\)]
Q2) \(\frac{5}{7}\) - \(\frac{5}{8}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{5}{56}\)]
Q2) \(\frac{2}{3}\) - \(\frac{2}{5}\) = [ \(\frac{4}{15}\)]
Q3) \(\frac{2}{5}\) - \(\frac{2}{9}\) = \({... - ...}\over45\) = \({...}\over{...}\) [ \(\frac{8}{45}\)]
Q3) \(\frac{2}{3}\) - \(\frac{5}{8}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{24}\)]
Q3) \(\frac{7}{8}\) - \(\frac{2}{3}\) = [ \(\frac{5}{24}\)]
Q4) \(\frac{2}{3}\) - \(\frac{3}{7}\) = \({... - ...}\over21\) = \({...}\over{...}\) [ \(\frac{5}{21}\)]
Q4) \(\frac{7}{8}\) - \(\frac{3}{7}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{25}{56}\)]
Q4) \(\frac{3}{4}\) - \(\frac{5}{9}\) = [ \(\frac{7}{36}\)]
Q5) \(\frac{3}{5}\) - \(\frac{4}{9}\) = \({... - ...}\over45\) = \({...}\over{...}\) [ \(\frac{7}{45}\)]
Q5) \(\frac{8}{9}\) - \(\frac{1}{4}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{23}{36}\)]
Q5) \(\frac{5}{7}\) - \(\frac{2}{5}\) = [ \(\frac{11}{35}\)]
Q6) \(\frac{6}{7}\) - \(\frac{5}{9}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{19}{63}\)]
Q6) \(\frac{5}{7}\) - \(\frac{1}{5}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{18}{35}\)]
Q6) \(\frac{2}{3}\) - \(\frac{2}{7}\) = [ \(\frac{8}{21}\)]
Q7) \(\frac{2}{7}\) - \(\frac{2}{9}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{4}{63}\)]
Q7) \(\frac{8}{9}\) - \(\frac{4}{5}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{4}{45}\)]
Q7) \(\frac{1}{2}\) - \(\frac{1}{3}\) = [ \(\frac{1}{6}\)]
Q8) \(\frac{4}{7}\) - \(\frac{4}{9}\) = \({... - ...}\over63\) = \({...}\over{...}\) [ \(\frac{8}{63}\)]
Q8) \(\frac{3}{5}\) - \(\frac{1}{3}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{4}{15}\)]
Q8) \(\frac{4}{5}\) - \(\frac{5}{9}\) = [ \(\frac{11}{45}\)]
Q9) \(\frac{9}{10}\) - \(\frac{2}{7}\) = \({... - ...}\over70\) = \({...}\over{...}\) [ \(\frac{43}{70}\)]
Q9) \(\frac{2}{3}\) - \(\frac{3}{7}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{5}{21}\)]
Q9) \(\frac{2}{5}\) - \(\frac{2}{7}\) = [ \(\frac{4}{35}\)]
Q10) \(\frac{7}{9}\) - \(\frac{3}{4}\) = \({... - ...}\over36\) = \({...}\over{...}\) [ \(\frac{1}{36}\)]
Q10) \(\frac{3}{5}\) - \(\frac{1}{2}\) = \({... - ...}\over{...}\) = \({...}\over{...}\) [ \(\frac{1}{10}\)]
Q10) \(\frac{4}{5}\) - \(\frac{7}{9}\) = [ \(\frac{1}{45}\)]