Mr Daniels Maths
Functions Inverse

Set 1

Set 2

Set 3

Q1) g(x) =x -7. Find g'(x). [ g'(x) = x +7]

Q1) h(x) = \(x\over 8\) + 9. Find h'(x). [ \(h'(x) \)= \(8(x -9)\)]

Q1) g(x) =\( 8 x^ 3 + 7\). Find g'(x). [ g'(x)= \( \sqrt[3]{{x -7}\over 8} \)]

Q2) \(g(x) =4{x}. \) Find \(g'(x).\) [ \(g'(x)\) = \(x\over4\)]

Q2) f(x) = 4 x -4. Find f'(x). [ \(f'(x) \)= \({x +4}\over4\)]

Q2) f(x) =\( 7 x^ 3 -9\). Find f'(x). [ f'(x)= \( \sqrt[3]{{x +9}\over 7} \)]

Q3) f(x) =x -3. Find f'(x). [ f'(x) = x +3]

Q3) h(x) = 3 x + 10. Find h'(x). [ \(h'(x) \)= \({x -10}\over3\)]

Q3) f(x) =\( 4 x^ 2 + 10\). Find f'(x). [ f'(x)= \( \sqrt[2]{{x -10}\over 4} \)]

Q4) f(x) =x -10. Find f'(x). [ f'(x) = x +10]

Q4) g(x) = \(x\over 3\) -6. Find g'(x). [ \(g'(x) \)= \(3(x +6)\)]

Q4) h(x) =\( 8 x^ 2 + 6\). Find h'(x). [ h'(x)= \( \sqrt[2]{{x -6}\over 8} \)]

Q5) g(x) =x -10. Find g'(x). [ g'(x) = x +10]

Q5) h(x) = \(x\over 7\) + 10. Find h'(x). [ \(h'(x) \)= \(7(x -10)\)]

Q5) f(x) =\(x^ 2 + 8\). Find f'(x). [ f'(x)= \( \sqrt[2]{x -8} \)]

Q6) g(x) =x -9. Find g'(x). [ g'(x) = x +9]

Q6) g(x) = 3 x -5. Find g'(x). [ \(g'(x) \)= \({x +5}\over3\)]

Q6) g(x) =\( 9 x^ 3 -2\). Find g'(x). [ g'(x)= \( \sqrt[3]{{x +2}\over 9} \)]

Q7) g(x) =x + 5. Find g'(x). [ g'(x) = x -5]

Q7) g(x) = \(x\over 9\) -7. Find g'(x). [ \(g'(x) \)= \(9(x +7)\)]

Q7) f(x) =\( 6 x^ 3 -3\). Find f'(x). [ f'(x)= \( \sqrt[3]{{x +3}\over 6} \)]

Q8) h(x) =x -6. Find h'(x). [ h'(x) = x +6]

Q8) h(x) = \(x\over 10\) + 7. Find h'(x). [ \(h'(x) \)= \(10(x -7)\)]

Q8) f(x) =\( 2 x^ 2 -9\). Find f'(x). [ f'(x)= \( \sqrt[2]{{x +9}\over 2} \)]

Q9) f(x) =x -2. Find f'(x). [ f'(x) = x +2]

Q9) f(x) = \(x\over 4\) -8. Find f'(x). [ \(f'(x) \)= \(4(x +8)\)]

Q9) h(x) =\(x^ 3 -5\). Find h'(x). [ h'(x)= \( \sqrt[3]{x +5} \)]

Q10) h(x) =x + 7. Find h'(x). [ h'(x) = x -7]

Q10) g(x) = \(x\over 6\) -2. Find g'(x). [ \(g'(x) \)= \(6(x +2)\)]

Q10) g(x) =\(x^ 3 -5\). Find g'(x). [ g'(x)= \( \sqrt[3]{x +5} \)]