Mr Daniels Maths
Functions Inverse

Set 1

Set 2

Set 3

Q1) h(x) =x -4. Find h'(x). [ h'(x) = x +4]

Q1) f(x) = 3 x + 7. Find f'(x). [ \(f'(x) \)= \({x -7}\over3\)]

Q1) g(x) =\( 5 x^ 3 -4\). Find g'(x). [ g'(x)= \( \sqrt[3]{{x +4}\over 5} \)]

Q2) g(x) =x -3. Find g'(x). [ g'(x) = x +3]

Q2) f(x) = x + 6. Find f'(x). [ \(f'(x) \)= \({x -6}\over1\)]

Q2) g(x) =\(x^ 3 + 4\). Find g'(x). [ g'(x)= \( \sqrt[3]{x -4} \)]

Q3) \(h(x) =8{x}. \) Find \(h'(x).\) [ \(h'(x)\) = \(x\over8\)]

Q3) f(x) = \(x\over 8\) -4. Find f'(x). [ \(f'(x) \)= \(8(x +4)\)]

Q3) g(x) =\( 4 x^ 2 + 3\). Find g'(x). [ g'(x)= \( \sqrt[2]{{x -3}\over 4} \)]

Q4) g(x) =x + 2. Find g'(x). [ g'(x) = x -2]

Q4) g(x) = \(x\over 5\) -2. Find g'(x). [ \(g'(x) \)= \(5(x +2)\)]

Q4) h(x) =\( 9 x^ 2 + 3\). Find h'(x). [ h'(x)= \( \sqrt[2]{{x -3}\over 9} \)]

Q5) \(g(x) =2{x}. \) Find \(g'(x).\) [ \(g'(x)\) = \(x\over2\)]

Q5) f(x) = \(x\over 9\) + 4. Find f'(x). [ \(f'(x) \)= \(9(x -4)\)]

Q5) h(x) =\( 7 x^ 2 + 10\). Find h'(x). [ h'(x)= \( \sqrt[2]{{x -10}\over 7} \)]

Q6) \(g(x) =7{x}. \) Find \(g'(x).\) [ \(g'(x)\) = \(x\over7\)]

Q6) h(x) = 6 x + 6. Find h'(x). [ \(h'(x) \)= \({x -6}\over6\)]

Q6) h(x) =\( 2 x^ 2 -2\). Find h'(x). [ h'(x)= \( \sqrt[2]{{x +2}\over 2} \)]

Q7) \(g(x) =5{x}. \) Find \(g'(x).\) [ \(g'(x)\) = \(x\over5\)]

Q7) g(x) = 8 x -8. Find g'(x). [ \(g'(x) \)= \({x +8}\over8\)]

Q7) f(x) =\(x^ 2 -5\). Find f'(x). [ f'(x)= \( \sqrt[2]{x +5} \)]

Q8) h(x) =x -10. Find h'(x). [ h'(x) = x +10]

Q8) h(x) = x -10. Find h'(x). [ \(h'(x) \)= \({x +10}\over1\)]

Q8) g(x) =\(x^ 2 -5\). Find g'(x). [ g'(x)= \( \sqrt[2]{x +5} \)]

Q9) h(x) =x -8. Find h'(x). [ h'(x) = x +8]

Q9) f(x) = \(x\over 4\) -2. Find f'(x). [ \(f'(x) \)= \(4(x +2)\)]

Q9) h(x) =\(x^ 3 -5\). Find h'(x). [ h'(x)= \( \sqrt[3]{x +5} \)]

Q10) \(f(x) =10{x}. \) Find \(f'(x).\) [ \(f'(x)\) = \(x\over10\)]

Q10) h(x) = \(x\over 2\) -4. Find h'(x). [ \(h'(x) \)= \(2(x +4)\)]

Q10) h(x) =\( 7 x^ 2 -9\). Find h'(x). [ h'(x)= \( \sqrt[2]{{x +9}\over 7} \)]