Mr Daniels Maths
Grouped Data

Set 1

Set 2

Set 3

Q1) Estimate the mean from

xFrequency
00 < x ≤ 10 65
10 < x ≤ 20 220
20 < x ≤ 40 375
40 < x ≤ 60 270
60 < x ≤ 80 110
[ mean =34.69]

Q1) Calculate the variance from

xFrequency
00 < x ≤ 10 150
10 < x ≤ 20 190
20 < x ≤ 30 255
30 < x ≤ 40 240
40 < x ≤ 60 200
[ var =214.5]

Q1) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 105
10 < x ≤ 30 180
30 < x ≤ 50 150
50 < x ≤ 60 375
60 < x ≤ 70 100
[ Standard Deviation =19.52]

Q2) Estimate the mean from

xFrequency
00 < x ≤ 10 145
10 < x ≤ 20 100
20 < x ≤ 40 360
40 < x ≤ 60 360
60 < x ≤ 70 230
[ mean =38.47]

Q2) Calculate the variance from

xFrequency
00 < x ≤ 10 75
10 < x ≤ 30 260
30 < x ≤ 40 300
40 < x ≤ 50 315
50 < x ≤ 70 170
[ var =234.2]

Q2) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 110
10 < x ≤ 30 210
30 < x ≤ 40 420
40 < x ≤ 50 300
50 < x ≤ 60 240
[ Standard Deviation =14.55]

Q3) Estimate the mean from

xFrequency
00 < x ≤ 10 135
10 < x ≤ 30 220
30 < x ≤ 40 315
40 < x ≤ 50 435
50 < x ≤ 70 220
[ mean =36.89]

Q3) Calculate the variance from

xFrequency
00 < x ≤ 10 140
10 < x ≤ 20 260
20 < x ≤ 30 150
30 < x ≤ 40 300
40 < x ≤ 60 200
[ var =219.6]

Q3) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 75
10 < x ≤ 30 270
30 < x ≤ 50 225
50 < x ≤ 70 195
70 < x ≤ 90 100
[ Standard Deviation =22.50]

Q4) Estimate the mean from

xFrequency
00 < x ≤ 10 145
10 < x ≤ 30 190
30 < x ≤ 50 360
50 < x ≤ 60 240
60 < x ≤ 70 200
[ mean =39.76]

Q4) Calculate the variance from

xFrequency
00 < x ≤ 10 145
10 < x ≤ 20 150
20 < x ≤ 30 165
30 < x ≤ 50 210
50 < x ≤ 60 300
[ var =338.5]

Q4) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 130
10 < x ≤ 20 100
20 < x ≤ 40 315
40 < x ≤ 60 285
60 < x ≤ 80 110
[ Standard Deviation =19.66]

Q5) Estimate the mean from

xFrequency
00 < x ≤ 10 55
10 < x ≤ 20 280
20 < x ≤ 30 270
30 < x ≤ 50 405
50 < x ≤ 60 160
[ mean =30.96]

Q5) Calculate the variance from

xFrequency
00 < x ≤ 10 150
10 < x ≤ 30 260
30 < x ≤ 50 270
50 < x ≤ 60 300
60 < x ≤ 70 160
[ var =396.4]

Q5) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 60
10 < x ≤ 30 120
30 < x ≤ 40 210
40 < x ≤ 50 240
50 < x ≤ 60 210
[ Standard Deviation =14.57]