Mr Daniels Maths
Grouped Data

Set 1

Set 2

Set 3

Q1) Estimate the mean from

xFrequency
00 < x ≤ 10 115
10 < x ≤ 20 220
20 < x ≤ 30 270
30 < x ≤ 50 195
50 < x ≤ 70 230

Q1) Calculate the variance from

xFrequency
00 < x ≤ 10 115
10 < x ≤ 20 180
20 < x ≤ 30 180
30 < x ≤ 40 345
40 < x ≤ 50 110

Q1) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 115
10 < x ≤ 30 300
30 < x ≤ 50 150
50 < x ≤ 60 405
60 < x ≤ 80 150

Q2) Estimate the mean from

xFrequency
00 < x ≤ 10 145
10 < x ≤ 20 200
20 < x ≤ 40 435
40 < x ≤ 60 345
60 < x ≤ 80 150

Q2) Calculate the variance from

xFrequency
00 < x ≤ 10 145
10 < x ≤ 20 270
20 < x ≤ 40 225
40 < x ≤ 50 240
50 < x ≤ 60 250

Q2) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 75
10 < x ≤ 20 150
20 < x ≤ 30 270
30 < x ≤ 40 330
40 < x ≤ 50 290

Q3) Estimate the mean from

xFrequency
00 < x ≤ 10 100
10 < x ≤ 20 210
20 < x ≤ 30 420
30 < x ≤ 40 180
40 < x ≤ 50 100

Q3) Calculate the variance from

xFrequency
00 < x ≤ 10 65
10 < x ≤ 20 100
20 < x ≤ 40 255
40 < x ≤ 60 300
60 < x ≤ 70 100

Q3) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 125
10 < x ≤ 30 220
30 < x ≤ 40 390
40 < x ≤ 60 450
60 < x ≤ 80 130

Q4) Estimate the mean from

xFrequency
00 < x ≤ 10 95
10 < x ≤ 20 290
20 < x ≤ 40 330
40 < x ≤ 50 240
50 < x ≤ 70 130

Q4) Calculate the variance from

xFrequency
00 < x ≤ 10 70
10 < x ≤ 20 220
20 < x ≤ 30 420
30 < x ≤ 40 450
40 < x ≤ 60 290

Q4) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 90
10 < x ≤ 20 120
20 < x ≤ 40 150
40 < x ≤ 60 270
60 < x ≤ 70 280

Q5) Estimate the mean from

xFrequency
00 < x ≤ 10 70
10 < x ≤ 30 120
30 < x ≤ 50 150
50 < x ≤ 70 240
70 < x ≤ 80 250

Q5) Calculate the variance from

xFrequency
00 < x ≤ 10 115
10 < x ≤ 30 130
30 < x ≤ 40 375
40 < x ≤ 60 435
60 < x ≤ 80 160

Q5) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 135
10 < x ≤ 30 150
30 < x ≤ 50 180
50 < x ≤ 60 180
60 < x ≤ 70 240