Mr Daniels Maths
Grouped Data

Set 1

Set 2

Set 3

Q1) Estimate the mean from

xFrequency
00 < x ≤ 10 85
10 < x ≤ 30 130
30 < x ≤ 50 315
50 < x ≤ 60 450
60 < x ≤ 80 120

Q1) Calculate the variance from

xFrequency
00 < x ≤ 10 70
10 < x ≤ 20 210
20 < x ≤ 40 330
40 < x ≤ 50 195
50 < x ≤ 70 280

Q1) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 110
10 < x ≤ 30 210
30 < x ≤ 40 315
40 < x ≤ 60 450
60 < x ≤ 70 290

Q2) Estimate the mean from

xFrequency
00 < x ≤ 10 60
10 < x ≤ 20 150
20 < x ≤ 40 420
40 < x ≤ 50 375
50 < x ≤ 60 260

Q2) Calculate the variance from

xFrequency
00 < x ≤ 10 60
10 < x ≤ 30 160
30 < x ≤ 40 150
40 < x ≤ 50 375
50 < x ≤ 60 260

Q2) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 60
10 < x ≤ 20 180
20 < x ≤ 40 345
40 < x ≤ 60 270
60 < x ≤ 70 160

Q3) Estimate the mean from

xFrequency
00 < x ≤ 10 120
10 < x ≤ 20 110
20 < x ≤ 40 420
40 < x ≤ 60 255
60 < x ≤ 80 230

Q3) Calculate the variance from

xFrequency
00 < x ≤ 10 80
10 < x ≤ 20 120
20 < x ≤ 40 255
40 < x ≤ 50 330
50 < x ≤ 70 280

Q3) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 150
10 < x ≤ 20 120
20 < x ≤ 40 210
40 < x ≤ 50 420
50 < x ≤ 60 200

Q4) Estimate the mean from

xFrequency
00 < x ≤ 10 60
10 < x ≤ 30 180
30 < x ≤ 40 390
40 < x ≤ 50 285
50 < x ≤ 60 180

Q4) Calculate the variance from

xFrequency
00 < x ≤ 10 80
10 < x ≤ 20 240
20 < x ≤ 40 240
40 < x ≤ 60 255
60 < x ≤ 80 100

Q4) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 85
10 < x ≤ 20 190
20 < x ≤ 30 360
30 < x ≤ 40 150
40 < x ≤ 60 290

Q5) Estimate the mean from

xFrequency
00 < x ≤ 10 120
10 < x ≤ 30 280
30 < x ≤ 40 435
40 < x ≤ 50 315
50 < x ≤ 60 140

Q5) Calculate the variance from

xFrequency
00 < x ≤ 10 75
10 < x ≤ 20 200
20 < x ≤ 40 315
40 < x ≤ 60 270
60 < x ≤ 70 250

Q5) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 70
10 < x ≤ 30 150
30 < x ≤ 40 300
40 < x ≤ 50 375
50 < x ≤ 70 280