Mr Daniels Maths
Grouped Data

Set 1

Set 2

Set 3

Q1) Estimate the mean from

xFrequency
00 < x ≤ 10 125
10 < x ≤ 30 220
30 < x ≤ 50 300
50 < x ≤ 60 315
60 < x ≤ 70 230
[ mean =41.43]

Q1) Calculate the variance from

xFrequency
00 < x ≤ 10 80
10 < x ≤ 30 210
30 < x ≤ 50 240
50 < x ≤ 70 150
70 < x ≤ 80 200
[ var =541.8]

Q1) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 60
10 < x ≤ 20 300
20 < x ≤ 30 315
30 < x ≤ 40 180
40 < x ≤ 50 120
[ Standard Deviation =11.09]

Q2) Estimate the mean from

xFrequency
00 < x ≤ 10 80
10 < x ≤ 30 170
30 < x ≤ 40 285
40 < x ≤ 50 450
50 < x ≤ 60 280
[ mean =39.07]

Q2) Calculate the variance from

xFrequency
00 < x ≤ 10 75
10 < x ≤ 30 130
30 < x ≤ 40 360
40 < x ≤ 50 180
50 < x ≤ 60 170
[ var =198.5]

Q2) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 75
10 < x ≤ 30 290
30 < x ≤ 40 150
40 < x ≤ 60 225
60 < x ≤ 70 260
[ Standard Deviation =19.91]

Q3) Estimate the mean from

xFrequency
00 < x ≤ 10 60
10 < x ≤ 20 100
20 < x ≤ 30 315
30 < x ≤ 50 240
50 < x ≤ 70 130
[ mean =32.04]

Q3) Calculate the variance from

xFrequency
00 < x ≤ 10 125
10 < x ≤ 30 260
30 < x ≤ 50 390
50 < x ≤ 60 240
60 < x ≤ 80 220
[ var =412.0]

Q3) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 80
10 < x ≤ 30 240
30 < x ≤ 50 240
50 < x ≤ 60 225
60 < x ≤ 70 110
[ Standard Deviation =18.64]

Q4) Estimate the mean from

xFrequency
00 < x ≤ 10 70
10 < x ≤ 30 240
30 < x ≤ 40 225
40 < x ≤ 50 330
50 < x ≤ 70 140
[ mean =36.09]

Q4) Calculate the variance from

xFrequency
00 < x ≤ 10 80
10 < x ≤ 30 190
30 < x ≤ 40 210
40 < x ≤ 50 420
50 < x ≤ 60 220
[ var =209.6]

Q4) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 145
10 < x ≤ 20 240
20 < x ≤ 30 150
30 < x ≤ 40 390
40 < x ≤ 50 250
[ Standard Deviation =13.37]

Q5) Estimate the mean from

xFrequency
00 < x ≤ 10 140
10 < x ≤ 20 210
20 < x ≤ 30 210
30 < x ≤ 40 195
40 < x ≤ 50 150
[ mean =25.06]

Q5) Calculate the variance from

xFrequency
00 < x ≤ 10 65
10 < x ≤ 20 150
20 < x ≤ 30 195
30 < x ≤ 40 225
40 < x ≤ 60 120
[ var =172.9]

Q5) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 115
10 < x ≤ 30 150
30 < x ≤ 40 345
40 < x ≤ 60 270
60 < x ≤ 70 180
[ Standard Deviation =18.09]