Mr Daniels Maths
Grouped Data

Set 1

Set 2

Set 3

Q1) Estimate the mean from

xFrequency
00 < x ≤ 10 105
10 < x ≤ 30 240
30 < x ≤ 40 255
40 < x ≤ 50 240
50 < x ≤ 70 140

Q1) Calculate the variance from

xFrequency
00 < x ≤ 10 50
10 < x ≤ 20 250
20 < x ≤ 30 285
30 < x ≤ 40 405
40 < x ≤ 50 200

Q1) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 55
10 < x ≤ 30 190
30 < x ≤ 40 240
40 < x ≤ 50 195
50 < x ≤ 70 100

Q2) Estimate the mean from

xFrequency
00 < x ≤ 10 115
10 < x ≤ 20 220
20 < x ≤ 40 345
40 < x ≤ 50 345
50 < x ≤ 70 280

Q2) Calculate the variance from

xFrequency
00 < x ≤ 10 55
10 < x ≤ 30 250
30 < x ≤ 40 225
40 < x ≤ 50 450
50 < x ≤ 60 210

Q2) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 145
10 < x ≤ 30 290
30 < x ≤ 40 180
40 < x ≤ 60 180
60 < x ≤ 80 280

Q3) Estimate the mean from

xFrequency
00 < x ≤ 10 90
10 < x ≤ 20 120
20 < x ≤ 40 150
40 < x ≤ 50 375
50 < x ≤ 60 280

Q3) Calculate the variance from

xFrequency
00 < x ≤ 10 140
10 < x ≤ 20 220
20 < x ≤ 40 300
40 < x ≤ 60 165
60 < x ≤ 70 170

Q3) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 135
10 < x ≤ 30 200
30 < x ≤ 50 165
50 < x ≤ 60 210
60 < x ≤ 70 290

Q4) Estimate the mean from

xFrequency
00 < x ≤ 10 120
10 < x ≤ 20 180
20 < x ≤ 30 270
30 < x ≤ 50 195
50 < x ≤ 60 260

Q4) Calculate the variance from

xFrequency
00 < x ≤ 10 60
10 < x ≤ 20 180
20 < x ≤ 40 225
40 < x ≤ 50 375
50 < x ≤ 60 210

Q4) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 135
10 < x ≤ 20 200
20 < x ≤ 30 180
30 < x ≤ 50 240
50 < x ≤ 60 160

Q5) Estimate the mean from

xFrequency
00 < x ≤ 10 120
10 < x ≤ 20 110
20 < x ≤ 40 330
40 < x ≤ 60 285
60 < x ≤ 80 240

Q5) Calculate the variance from

xFrequency
00 < x ≤ 10 130
10 < x ≤ 30 170
30 < x ≤ 50 225
50 < x ≤ 70 315
70 < x ≤ 90 230

Q5) Calculate the Standard Deviation from

xFrequency
00 < x ≤ 10 115
10 < x ≤ 20 170
20 < x ≤ 30 165
30 < x ≤ 50 150
50 < x ≤ 60 200