Q1) \( 4 ^ {3}\) \(\div\) \( 4 ^{8} = \) [ \( 4 ^{-5}\)]
Q1) \( w ^ {10}\) x \(w ^{10} = \) [ \( w ^{20}\)]
Q1) \( { 12 ^ {8} \times 12 ^ {3}} \over 12 ^{3} \) = [ \( 12 ^{8}\)]
Q2) \( 3 ^ {6}\) x \( 3 ^{3} = \) [ \( 3 ^{9}\)]
Q2) \( z ^ {4}\) x \(z ^{5} = \) [ \( z ^{9}\)]
Q2) \( { 19 ^ {3} \times 19 ^ {3}} \over 19 ^{8} \) = [ \( 19 ^{-2}\)]
Q3) \( 2 ^ {8}\) x \( 2 ^{8} = \) [ \( 2 ^{16}\)]
Q3) \( x ^ {7}\) x \(x ^{3} = \) [ \( x ^{10}\)]
Q3) \( { 10 ^ {6} \times 10 ^ {5}} \over 10 ^{8} \) = [ \( 10 ^{3}\)]
Q4) \( 2 ^ {8}\) x \( 2 ^{8} = \) [ \( 2 ^{16}\)]
Q4) \( w ^ {8}\) \(\div\) \( w ^{3} = \) [ \( w ^{5}\)]
Q4) \( { y ^ {6} \times y ^ {5}} \over y ^{8} \) = [ \( y ^{3}\)]
Q5) \( 8 ^ {5}\) x \( 8 ^{4} = \) [ \( 8 ^{9}\)]
Q5) \( w ^ {5}\) x \(w ^{6} = \) [ \( w ^{11}\)]
Q5) \( { 20 ^ {8} \times 20 ^ {6}} \over 20 ^{8} \) = [ \( 20 ^{6}\)]
Q6) \( 9 ^ {5}\) x \( 9 ^{9} = \) [ \( 9 ^{14}\)]
Q6) \( x ^ {8}\) x \(x ^{3} = \) [ \( x ^{11}\)]
Q6) \( { 11 ^ {2} \times 11 ^ {9}} \over 11 ^{10} \) = [ \( 11 \)]
Q7) \( 2 ^ {3}\) \(\div\) \( 2 ^{7} = \) [ \( 2 ^{-4}\)]
Q7) \( x ^ {10}\) x \(x ^{4} = \) [ \( x ^{14}\)]
Q7) \( { w ^ {6} \times w ^ {5}} \over w ^{9} \) = [ \( w ^{2}\)]
Q8) \( 6 ^ {7}\) x \( 6 ^{3} = \) [ \( 6 ^{10}\)]
Q8) \( x ^ {6}\) x \(x ^{7} = \) [ \( x ^{13}\)]
Q8) \( { z ^ {3} \times z ^ {8}} \over z ^{4} \) = [ \( z ^{7}\)]
Q9) \( 2 ^ {2}\) \(\div\) \( 2 ^{3} = \) [ \( 2 ^{-1}\)]
Q9) \( x ^ {8}\) \(\div\) \( x ^{4} = \) [ \( x ^{4}\)]
Q9) \( { x ^ {5} \times x ^ {10}} \over x ^{5} \) = [ \( x ^{10}\)]
Q10) \( 4 ^ {3}\) \(\div\) \( 4 ^{4} = \) [ \( 4 ^{-1}\)]
Q10) \( z ^ {4}\) x \(z ^{6} = \) [ \( z ^{10}\)]
Q10) \( { z ^ {5} \times z ^ {5}} \over z ^{4} \) = [ \( z ^{6}\)]