Q1) 1\(\frac{1}{8}\) + 1\(\frac{1}{5}\) = [ 2\(\frac{13}{40}\)]
Q1) 3\(\frac{2}{3}\) - 1\(\frac{1}{2}\) = [ 2\(\frac{1}{6}\)]
Q1) 2\(\frac{2}{3}\) x 3\(\frac{1}{2}\) = [ 9\(\frac{1}{3}\)]
Q2) 1\(\frac{1}{9}\) + 2\(\frac{1}{4}\) = [ 3\(\frac{13}{36}\)]
Q2) 4\(\frac{1}{2}\) - 2\(\frac{2}{5}\) = [ 2\(\frac{1}{10}\)]
Q2) 3\(\frac{1}{3}\) x 3\(\frac{1}{3}\) = [ 11\(\frac{1}{9}\)]
Q3) 1\(\frac{2}{3}\) + 1\(\frac{1}{2}\) = [ 3\(\frac{1}{6}\)]
Q3) 2\(\frac{3}{5}\) - 1\(\frac{2}{3}\) = [ \(\frac{14}{15}\)]
Q3) 1\(\frac{1}{7}\) \(\div\) 2\(\frac{1}{4}\) = [ \(\frac{32}{63}\)]
Q4) 1\(\frac{2}{5}\) + 2\(\frac{1}{4}\) = [ 3\(\frac{13}{20}\)]
Q4) 2\(\frac{1}{3}\) - 1\(\frac{1}{4}\) = [ 1\(\frac{1}{12}\)]
Q4) 1\(\frac{1}{2}\) \(\div\) 1\(\frac{1}{3}\) = [ 1\(\frac{1}{8}\)]
Q5) 2\(\frac{1}{4}\) + 1\(\frac{2}{7}\) = [ 3\(\frac{15}{28}\)]
Q5) 2\(\frac{3}{4}\) - 1\(\frac{1}{2}\) = [ 1\(\frac{1}{4}\)]
Q5) 1\(\frac{2}{5}\) x 1\(\frac{1}{2}\) = [ 2\(\frac{1}{10}\)]
Q6) 2\(\frac{1}{2}\) + 1\(\frac{1}{7}\) = [ 3\(\frac{9}{14}\)]
Q6) 5\(\frac{1}{2}\) - 2\(\frac{1}{5}\) = [ 3\(\frac{3}{10}\)]
Q6) 1\(\frac{1}{6}\) \(\div\) 3\(\frac{1}{3}\) = [ \(\frac{7}{20}\)]
Q7) 1\(\frac{1}{2}\) + 2\(\frac{1}{2}\) = [ 4]
Q7) 2\(\frac{3}{5}\) - 1\(\frac{6}{11}\) = [ 1\(\frac{3}{55}\)]
Q7) 1\(\frac{1}{3}\) \(\div\) 3\(\frac{1}{2}\) = [ \(\frac{8}{21}\)]
Q8) 3\(\frac{1}{2}\) + 1\(\frac{1}{4}\) = [ 4\(\frac{3}{4}\)]
Q8) 1\(\frac{5}{6}\) - 1\(\frac{2}{5}\) = [ \(\frac{13}{30}\)]
Q8) 1\(\frac{2}{3}\) x 1\(\frac{1}{4}\) = [ 2\(\frac{1}{12}\)]
Q9) 2\(\frac{1}{4}\) + 1\(\frac{1}{2}\) = [ 3\(\frac{3}{4}\)]
Q9) 2\(\frac{1}{3}\) - 2\(\frac{1}{4}\) = [ \(\frac{1}{12}\)]
Q9) 1\(\frac{1}{4}\) x 1\(\frac{3}{4}\) = [ 2\(\frac{3}{16}\)]
Q10) 3\(\frac{1}{2}\) + 1\(\frac{1}{2}\) = [ 5]
Q10) 1\(\frac{3}{4}\) - 1\(\frac{4}{9}\) = [ \(\frac{11}{36}\)]
Q10) 1\(\frac{2}{3}\) \(\div\) 1\(\frac{1}{8}\) = [ 1\(\frac{13}{27}\)]