Mr Daniels Maths
Mixed Numbers 4 Operations

Set 1

Set 2

Set 3

Q1) 1\(\frac{1}{8}\) + 1\(\frac{1}{5}\) = [ 2\(\frac{13}{40}\)]

Q1) 3\(\frac{2}{3}\) - 1\(\frac{1}{2}\) = [ 2\(\frac{1}{6}\)]

Q1) 2\(\frac{2}{3}\) x 3\(\frac{1}{2}\) = [ 9\(\frac{1}{3}\)]

Q2) 1\(\frac{1}{9}\) + 2\(\frac{1}{4}\) = [ 3\(\frac{13}{36}\)]

Q2) 4\(\frac{1}{2}\) - 2\(\frac{2}{5}\) = [ 2\(\frac{1}{10}\)]

Q2) 3\(\frac{1}{3}\) x 3\(\frac{1}{3}\) = [ 11\(\frac{1}{9}\)]

Q3) 1\(\frac{2}{3}\) + 1\(\frac{1}{2}\) = [ 3\(\frac{1}{6}\)]

Q3) 2\(\frac{3}{5}\) - 1\(\frac{2}{3}\) = [ \(\frac{14}{15}\)]

Q3) 1\(\frac{1}{7}\) \(\div\) 2\(\frac{1}{4}\) = [ \(\frac{32}{63}\)]

Q4) 1\(\frac{2}{5}\) + 2\(\frac{1}{4}\) = [ 3\(\frac{13}{20}\)]

Q4) 2\(\frac{1}{3}\) - 1\(\frac{1}{4}\) = [ 1\(\frac{1}{12}\)]

Q4) 1\(\frac{1}{2}\) \(\div\) 1\(\frac{1}{3}\) = [ 1\(\frac{1}{8}\)]

Q5) 2\(\frac{1}{4}\) + 1\(\frac{2}{7}\) = [ 3\(\frac{15}{28}\)]

Q5) 2\(\frac{3}{4}\) - 1\(\frac{1}{2}\) = [ 1\(\frac{1}{4}\)]

Q5) 1\(\frac{2}{5}\) x 1\(\frac{1}{2}\) = [ 2\(\frac{1}{10}\)]

Q6) 2\(\frac{1}{2}\) + 1\(\frac{1}{7}\) = [ 3\(\frac{9}{14}\)]

Q6) 5\(\frac{1}{2}\) - 2\(\frac{1}{5}\) = [ 3\(\frac{3}{10}\)]

Q6) 1\(\frac{1}{6}\) \(\div\) 3\(\frac{1}{3}\) = [ \(\frac{7}{20}\)]

Q7) 1\(\frac{1}{2}\) + 2\(\frac{1}{2}\) = [ 4]

Q7) 2\(\frac{3}{5}\) - 1\(\frac{6}{11}\) = [ 1\(\frac{3}{55}\)]

Q7) 1\(\frac{1}{3}\) \(\div\) 3\(\frac{1}{2}\) = [ \(\frac{8}{21}\)]

Q8) 3\(\frac{1}{2}\) + 1\(\frac{1}{4}\) = [ 4\(\frac{3}{4}\)]

Q8) 1\(\frac{5}{6}\) - 1\(\frac{2}{5}\) = [ \(\frac{13}{30}\)]

Q8) 1\(\frac{2}{3}\) x 1\(\frac{1}{4}\) = [ 2\(\frac{1}{12}\)]

Q9) 2\(\frac{1}{4}\) + 1\(\frac{1}{2}\) = [ 3\(\frac{3}{4}\)]

Q9) 2\(\frac{1}{3}\) - 2\(\frac{1}{4}\) = [ \(\frac{1}{12}\)]

Q9) 1\(\frac{1}{4}\) x 1\(\frac{3}{4}\) = [ 2\(\frac{3}{16}\)]

Q10) 3\(\frac{1}{2}\) + 1\(\frac{1}{2}\) = [ 5]

Q10) 1\(\frac{3}{4}\) - 1\(\frac{4}{9}\) = [ \(\frac{11}{36}\)]

Q10) 1\(\frac{2}{3}\) \(\div\) 1\(\frac{1}{8}\) = [ 1\(\frac{13}{27}\)]