Q1) 2\(\frac{1}{2}\) + 1\(\frac{3}{7}\) = [ 3\(\frac{13}{14}\)]
Q1) 3\(\frac{1}{3}\) - 1\(\frac{4}{9}\) = [ 1\(\frac{8}{9}\)]
Q1) 1\(\frac{3}{5}\) x 1\(\frac{1}{3}\) = [ 2\(\frac{2}{15}\)]
Q2) 1\(\frac{1}{6}\) + 1\(\frac{3}{5}\) = [ 2\(\frac{23}{30}\)]
Q2) 2\(\frac{1}{3}\) - 1\(\frac{2}{5}\) = [ \(\frac{14}{15}\)]
Q2) 1\(\frac{1}{9}\) \(\div\) 1\(\frac{3}{7}\) = [ \(\frac{7}{9}\)]
Q3) 1\(\frac{1}{2}\) + 2\(\frac{2}{3}\) = [ 4\(\frac{1}{6}\)]
Q3) 1\(\frac{3}{4}\) - 1\(\frac{3}{10}\) = [ \(\frac{9}{20}\)]
Q3) 2\(\frac{1}{2}\) \(\div\) 1\(\frac{1}{4}\) = [ 2]
Q4) 2\(\frac{1}{2}\) + 1\(\frac{1}{5}\) = [ 3\(\frac{7}{10}\)]
Q4) 3\(\frac{1}{2}\) - 1\(\frac{2}{7}\) = [ 2\(\frac{3}{14}\)]
Q4) 2\(\frac{1}{2}\) x 1\(\frac{1}{8}\) = [ 2\(\frac{13}{16}\)]
Q5) 1\(\frac{1}{3}\) + 1\(\frac{1}{2}\) = [ 2\(\frac{5}{6}\)]
Q5) 4\(\frac{1}{3}\) - 1\(\frac{2}{11}\) = [ 3\(\frac{5}{33}\)]
Q5) 1\(\frac{1}{2}\) x 1\(\frac{2}{3}\) = [ 2\(\frac{1}{2}\)]
Q6) 1\(\frac{1}{3}\) + 1\(\frac{1}{2}\) = [ 2\(\frac{5}{6}\)]
Q6) 2\(\frac{4}{5}\) - 1\(\frac{1}{2}\) = [ 1\(\frac{3}{10}\)]
Q6) 1\(\frac{1}{8}\) \(\div\) 2\(\frac{1}{3}\) = [ \(\frac{27}{56}\)]
Q7) 1\(\frac{1}{2}\) + 1\(\frac{1}{3}\) = [ 2\(\frac{5}{6}\)]
Q7) 3\(\frac{2}{3}\) - 1\(\frac{1}{2}\) = [ 2\(\frac{1}{6}\)]
Q7) 1\(\frac{1}{7}\) \(\div\) 1\(\frac{2}{3}\) = [ \(\frac{24}{35}\)]
Q8) 1\(\frac{2}{3}\) + 1\(\frac{2}{7}\) = [ 2\(\frac{20}{21}\)]
Q8) 2\(\frac{3}{4}\) - 2\(\frac{2}{3}\) = [ \(\frac{1}{12}\)]
Q8) 1\(\frac{2}{3}\) x 1\(\frac{3}{4}\) = [ 2\(\frac{11}{12}\)]
Q9) 1\(\frac{1}{6}\) + 1\(\frac{1}{4}\) = [ 2\(\frac{5}{12}\)]
Q9) 1\(\frac{3}{4}\) - 1\(\frac{3}{5}\) = [ \(\frac{3}{20}\)]
Q9) 2\(\frac{1}{3}\) x 1\(\frac{1}{2}\) = [ 3\(\frac{1}{2}\)]
Q10) 1\(\frac{1}{3}\) + 1\(\frac{2}{3}\) = [ 3]
Q10) 2\(\frac{1}{2}\) - 2\(\frac{2}{7}\) = [ \(\frac{3}{14}\)]
Q10) 2\(\frac{2}{3}\) \(\div\) 1\(\frac{1}{8}\) = [ 2\(\frac{10}{27}\)]