Q1) 1\(\frac{1}{8}\) + 1\(\frac{2}{3}\) = [ 2\(\frac{19}{24}\)]
Q1) 1\(\frac{5}{7}\) - 1\(\frac{2}{5}\) = [ \(\frac{11}{35}\)]
Q1) 2\(\frac{1}{2}\) \(\div\) 1\(\frac{1}{2}\) = [ 1\(\frac{2}{3}\)]
Q2) 1\(\frac{4}{5}\) + 1\(\frac{1}{4}\) = [ 3\(\frac{1}{20}\)]
Q2) 3\(\frac{2}{3}\) - 1\(\frac{1}{2}\) = [ 2\(\frac{1}{6}\)]
Q2) 1\(\frac{2}{5}\) \(\div\) 1\(\frac{2}{5}\) = [ 1]
Q3) 1\(\frac{2}{5}\) + 1\(\frac{3}{4}\) = [ 3\(\frac{3}{20}\)]
Q3) 5\(\frac{1}{2}\) - 2\(\frac{4}{5}\) = [ 2\(\frac{7}{10}\)]
Q3) 1\(\frac{3}{5}\) \(\div\) 2\(\frac{2}{3}\) = [ \(\frac{3}{5}\)]
Q4) 1\(\frac{3}{7}\) + 2\(\frac{2}{3}\) = [ 4\(\frac{2}{21}\)]
Q4) 3\(\frac{1}{4}\) - 2\(\frac{2}{3}\) = [ \(\frac{7}{12}\)]
Q4) 1\(\frac{2}{3}\) \(\div\) 4\(\frac{1}{2}\) = [ \(\frac{10}{27}\)]
Q5) 1\(\frac{1}{2}\) + 4\(\frac{1}{2}\) = [ 6]
Q5) 2\(\frac{1}{3}\) - 1\(\frac{2}{5}\) = [ \(\frac{14}{15}\)]
Q5) 1\(\frac{1}{3}\) x 1\(\frac{3}{4}\) = [ 2\(\frac{1}{3}\)]
Q6) 1\(\frac{3}{4}\) + 1\(\frac{3}{5}\) = [ 3\(\frac{7}{20}\)]
Q6) 1\(\frac{3}{5}\) - 1\(\frac{2}{5}\) = [ \(\frac{1}{5}\)]
Q6) 4\(\frac{1}{2}\) \(\div\) 1\(\frac{3}{4}\) = [ 2\(\frac{4}{7}\)]
Q7) 1\(\frac{1}{6}\) + 1\(\frac{2}{3}\) = [ 2\(\frac{5}{6}\)]
Q7) 1\(\frac{5}{6}\) - 1\(\frac{1}{2}\) = [ \(\frac{1}{3}\)]
Q7) 1\(\frac{2}{5}\) \(\div\) 3\(\frac{1}{3}\) = [ \(\frac{21}{50}\)]
Q8) 4\(\frac{1}{2}\) + 2\(\frac{2}{3}\) = [ 7\(\frac{1}{6}\)]
Q8) 2\(\frac{3}{4}\) - 2\(\frac{1}{3}\) = [ \(\frac{5}{12}\)]
Q8) 2\(\frac{1}{3}\) \(\div\) 3\(\frac{1}{3}\) = [ \(\frac{7}{10}\)]
Q9) 2\(\frac{1}{2}\) + 2\(\frac{1}{3}\) = [ 4\(\frac{5}{6}\)]
Q9) 2\(\frac{2}{5}\) - 1\(\frac{2}{5}\) = [ 1]
Q9) 1\(\frac{1}{9}\) \(\div\) 1\(\frac{3}{4}\) = [ \(\frac{40}{63}\)]
Q10) 1\(\frac{1}{4}\) + 2\(\frac{2}{3}\) = [ 3\(\frac{11}{12}\)]
Q10) 1\(\frac{4}{5}\) - 1\(\frac{7}{11}\) = [ \(\frac{9}{55}\)]
Q10) 1\(\frac{2}{3}\) x 1\(\frac{3}{4}\) = [ 2\(\frac{11}{12}\)]