Mr Daniels Maths
Rearranging Formula 2

Set 1

Set 2

Set 3

Q1) w =z -7. Rearrange to find z . [ \(z = w +7\)]

Q1) \(w =10x + 9\) . Find x . [ \(x \)= \({w -9}\over10\)]

Q1) x =\(z^ 3 -3\). Find z . [ z= \( \sqrt[3]{x +3} \)]

Q2) z =w -4. Rearrange to find w . [ \(w = z +4\)]

Q2) z = \(w\over 7\) + 9. Find w . [ \(w \)= \(7( z -9)\)]

Q2) w =\(x^ 3 + 5\). Find x . [ x= \( \sqrt[3]{w -5} \)]

Q3) x =w + 4. Rearrange to find w . [ \(w = x -4\)]

Q3) y = \(z\over 8\) + 4. Find z . [ \(z \)= \(8( y -4)\)]

Q3) y =\( 3 z^ 3 + 4\). Find z . [ z = \( \sqrt[3]{{y -4}\over 3} \)]

Q4) z =y -8. Rearrange to find y . [ \(y = z +8\)]

Q4) \(x =9z + 10\) . Find z . [ \(z \)= \({x -10}\over9\)]

Q4) w =\( 3 z^ 3 -10\). Find z . [ z = \( \sqrt[3]{{w +10}\over 3} \)]

Q5) \(z ={w \over 6.} \) Find \(w\). [ \(w\) = \(6z\)]

Q5) z = \(y\over 9\) -5. Find y . [ \(y \)= \(9( z +5)\)]

Q5) w =\( 2 z^ 2 -9\). Find z . [ z = \( \sqrt[2]{{w +9}\over 2} \)]

Q6) \(z ={y \over 8.} \) Find \(y\). [ \(y\) = \(8z\)]

Q6) w = \(y\over 8\) -2. Find y . [ \(y \)= \(8( w +2)\)]

Q6) x =\( 5 y^ 3 + 5\). Find y . [ y = \( \sqrt[3]{{x -5}\over 5} \)]

Q7) y =w + 9. Rearrange to find w . [ \(w = y -9\)]

Q7) y = \(z\over 5\) + 10. Find z . [ \(z \)= \(5( y -10)\)]

Q7) x =\(z^ 2 + 3\). Find z . [ z= \( \sqrt[2]{x -3} \)]

Q8) x =w + 5. Rearrange to find w . [ \(w = x -5\)]

Q8) x = \(z\over 7\) + 10. Find z . [ \(z \)= \(7( x -10)\)]

Q8) z =\( 10 y^ 2 + 7\). Find y . [ y = \( \sqrt[2]{{z -7}\over 10} \)]

Q9) y =z + 2. Rearrange to find z . [ \(z = y -2\)]

Q9) w = \(y\over 5\) -10. Find y . [ \(y \)= \(5( w +10)\)]

Q9) y =\(x^ 2 + 3\). Find x . [ x= \( \sqrt[2]{y -3} \)]

Q10) \(w =2x. \) Find \((x).\) [ \(x\) = \(w\over2\)]

Q10) w = \(z\over 5\) + 9. Find z . [ \(z \)= \(5( w -9)\)]

Q10) x =\(w^ 3 + 4\). Find w . [ w= \( \sqrt[3]{x -4} \)]