Mr Daniels Maths
Solving Inequalities

Set 1

Set 2

Set 3

Q1) \(3x -5 < 4 \) [ , \(x < 3\)]

Q1) \(8(9 - x) > 48 \) [ \(,x < 3\)]

Q1) \(6x -13 < 2x + 7\) [ ,\(x < 5\)]

Q2) \(10x -3 < 97 \) [ , \(x < 10\)]

Q2) \(5(7 - x) < 20 \) [ \(,x > 3\)]

Q2) \(14x -17 > 9x + 3\) [ ,\(x > 4\)]

Q3) \(19 -3x \leqslant 4 \) [ , \(x \geqslant 5\)]

Q3) \(2(9 - x) < 6 \) [ \(,x > 6\)]

Q3) \(7x -6 < 3x + 18\) [ ,\(x < 6\)]

Q4) \(20 -9x < 2 \) [ , \(x > 2\)]

Q4) \(7(x + 9) < 133 \) [ \(,x < 10\)]

Q4) \(11x -5 < 9x + 9\) [ ,\(x < 7\)]

Q5) \(9x + 9 \geqslant 36 \) [ , \(x \geqslant 3\)]

Q5) \(3(9 - x) > 9 \) [ \(,x < 6\)]

Q5) \(9x -5 > 2x + 16\) [ ,\(x > 3\)]

Q6) \(3x -3 \leqslant 6 \) [ , \(x \leqslant 3\)]

Q6) \(6(x + 10) \geqslant 120 \) [ \(,x \geqslant 10\)]

Q6) \(9x -16 < 4x + 4\) [ ,\(x < 4\)]

Q7) \(7x -6 \geqslant 15 \) [ , \(x \geqslant 3\)]

Q7) \(3(x -3) > 15 \) [ \(,x > 8\)]

Q7) \(6x -16 > 3x + 5\) [ ,\(x > 7\)]

Q8) \(18 -3x \geqslant 12 \) [ , \(x \leqslant 2\)]

Q8) \(4(10 - x) < 12 \) [ \(,x > 7\)]

Q8) \(13x -3 < 10x + 12\) [ ,\(x < 5\)]

Q9) \(2x -9 \leqslant 3 \) [ , \(x \leqslant 6\)]

Q9) \(5(x -3) > 30 \) [ \(,x > 9\)]

Q9) \(11x -2 > 9x + 18\) [ ,\(x > 10\)]

Q10) \(4x -10 \leqslant 26 \) [ , \(x \leqslant 9\)]

Q10) \(6(5 - x) < 6 \) [ \(,x > 4\)]

Q10) \(15x -6 < 8x + 15\) [ ,\(x < 3\)]