Mr Daniels Maths
Solving Inequalities with negatives

Set 1

Set 2

Set 3

Q1) \(18 -2x \geqslant 2 \) [ , \(x \leqslant 8\)]

Q1) \(2(9 - x) \leqslant 12 \) [ \(,x \geqslant 3\)]

Q1) \(6(x -8) \leqslant 6 \) [ \(,x \leqslant 9\)]

Q2) \(19 -2x > 1 \) [ , \(x < 9\)]

Q2) \(9(10 - x) \geqslant 72 \) [ \(,x \leqslant 2\)]

Q2) \(20 -4x < 4 \) [ , \(x > 4\)]

Q3) \(15 -5x \geqslant 5 \) [ , \(x \leqslant 2\)]

Q3) \(5(8 - x) \geqslant 20 \) [ \(,x \leqslant 4\)]

Q3) \(8x -10 < 62 \) [ , \(x < 9\)]

Q4) \(20 -2x < 10 \) [ , \(x > 5\)]

Q4) \(7(9 - x) < 21 \) [ \(,x > 6\)]

Q4) \(6(x -7) < 6 \) [ \(,x < 8\)]

Q5) \(12 -3x \leqslant 6 \) [ , \(x \geqslant 2\)]

Q5) \(4(5 - x) > 8 \) [ \(,x < 3\)]

Q5) \(12 -5x < 2 \) [ , \(x > 2\)]

Q6) \(13 -2x \leqslant 5 \) [ , \(x \geqslant 4\)]

Q6) \(9(5 - x) > 27 \) [ \(,x < 2\)]

Q6) \(11(x -3) \leqslant 44 \) [ \(,x \leqslant 7\)]

Q7) \(15 -3x \leqslant 9 \) [ , \(x \geqslant 2\)]

Q7) \(3(8 - x) > 18 \) [ \(,x < 2\)]

Q7) \(20 -9x \geqslant 2 \) [ , \(x \leqslant 2\)]

Q8) \(8 -3x \geqslant 2 \) [ , \(x \leqslant 2\)]

Q8) \(8(8 - x) \geqslant 40 \) [ \(,x \leqslant 3\)]

Q8) \(11(4 - x) > 22 \) [ \(,x < 2\)]

Q9) \(17 -4x \geqslant 9 \) [ , \(x \leqslant 2\)]

Q9) \(6(5 - x) \geqslant 12 \) [ \(,x \leqslant 3\)]

Q9) \(7(x + 9) > 133 \) [ \(,x > 10\)]

Q10) \(18 -3x < 12 \) [ , \(x > 2\)]

Q10) \(2(10 - x) < 8 \) [ \(,x > 6\)]

Q10) \(6x + 4 \geqslant 28 \) [ , \(x \geqslant 4\)]