Mr Daniels Maths
Solving Inequalities with negatives 2

Set 1

Set 2

Set 3

Q1) \(6x -6 > 4x + 10\) [ ,\(x > 8\)]

Q1) \(7x -15 > 10x + 6\) [ ,\(x <\) -7]

Q1) \(8x -13 < 6x + 9\) [ ,\(x < 11\)]

Q2) \(7x -4 < 4x + 11\) [ ,\(x < 5\)]

Q2) \(5x -12 < 13x + 12\) [ ,\(x >\) -3]

Q2) \(15x + 12 < 16x + 18\) [ ,\(x >\) -6]

Q3) \(7x + 4 > 5x + 16\) [ ,\(x > 6\)]

Q3) \(4x + 13 < 11x + 13\) [ ,\(x >\) 0]

Q3) \(10x -17 < 6x + 15\) [ ,\(x < 8\)]

Q4) \(8x -20 > 3x + 20\) [ ,\(x > 8\)]

Q4) \(2x + 19 < 4x + 7\) [ ,\(x >\) 6]

Q4) \(11x + 5 < 20x + 14\) [ ,\(x >\) -1]

Q5) \(5x -14 > 2x + 19\) [ ,\(x > 11\)]

Q5) \(9x + 20 > 11x + 12\) [ ,\(x <\) 4]

Q5) \(9x + 9 < 16x + 16\) [ ,\(x >\) -1]

Q6) \(9x -12 > 6x + 9\) [ ,\(x > 7\)]

Q6) \(4x + 2 > 16x + 2\) [ ,\(x <\) 0]

Q6) \(15x -2 < 11x + 14\) [ ,\(x < 4\)]

Q7) \(8x -14 > 6x + 14\) [ ,\(x > 14\)]

Q7) \(5x -19 > 7x + 5\) [ ,\(x <\) -12]

Q7) \(8x + 3 < 9x + 18\) [ ,\(x >\) -15]

Q8) \(9x -5 < 7x + 3\) [ ,\(x < 4\)]

Q8) \(2x -4 > 12x + 16\) [ ,\(x <\) -2]

Q8) \(12x -19 < 2x + 11\) [ ,\(x < 3\)]

Q9) \(8x -19 > 6x + 9\) [ ,\(x > 14\)]

Q9) \(8x + 20 < 9x + 18\) [ ,\(x >\) 2]

Q9) \(12x + 14 > 9x + 20\) [ ,\(x > 2\)]

Q10) \(10x + 6 > 8x + 16\) [ ,\(x > 5\)]

Q10) \(4x + 2 < 7x + 5\) [ ,\(x >\) -1]

Q10) \(17x -18 < 15x + 6\) [ ,\(x < 12\)]