Mr Daniels Maths
Solving Inequalities with negatives 2

Set 1

Set 2

Set 3

Q1) \(10x -17 > 7x + 10\) [ ,\(x > 9\)]

Q1) \(3x -13 > 5x + 17\) [ ,\(x <\) -15]

Q1) \(12x -14 < 14x + 10\) [ ,\(x >\) -12]

Q2) \(6x -8 < 2x + 20\) [ ,\(x < 7\)]

Q2) \(9x -19 < 10x + 9\) [ ,\(x >\) -28]

Q2) \(10x -3 > 16x + 9\) [ ,\(x <\) -2]

Q3) \(9x + 2 < 6x + 17\) [ ,\(x < 5\)]

Q3) \(5x + 12 > 8x + 9\) [ ,\(x <\) 1]

Q3) \(8x -6 > 6x + 8\) [ ,\(x > 7\)]

Q4) \(6x -15 < 4x + 15\) [ ,\(x < 15\)]

Q4) \(8x + 16 < 10x + 20\) [ ,\(x >\) -2]

Q4) \(10x -10 < 11x + 13\) [ ,\(x >\) -23]

Q5) \(8x + 3 > 5x + 9\) [ ,\(x > 2\)]

Q5) \(3x + 16 < 6x + 13\) [ ,\(x >\) 1]

Q5) \(3x -5 > 10x + 2\) [ ,\(x <\) -1]

Q6) \(8x -8 < 2x + 4\) [ ,\(x < 2\)]

Q6) \(9x -20 < 10x + 12\) [ ,\(x >\) -32]

Q6) \(11x + 20 > 13x + 10\) [ ,\(x <\) 5]

Q7) \(10x -13 < 8x + 7\) [ ,\(x < 10\)]

Q7) \(2x -4 > 3x + 10\) [ ,\(x <\) -14]

Q7) \(11x -11 < 13x + 15\) [ ,\(x >\) -13]

Q8) \(6x + 7 > 4x + 15\) [ ,\(x > 4\)]

Q8) \(5x -20 > 10x + 20\) [ ,\(x <\) -8]

Q8) \(12x -20 < 8x + 8\) [ ,\(x < 7\)]

Q9) \(10x -20 > 8x + 10\) [ ,\(x > 15\)]

Q9) \(2x -16 > 3x + 17\) [ ,\(x <\) -33]

Q9) \(5x + 19 > 8x + 7\) [ ,\(x <\) 4]

Q10) \(7x -11 > 5x + 11\) [ ,\(x > 11\)]

Q10) \(9x + 13 > 20x + 13\) [ ,\(x <\) 0]

Q10) \(20x -9 > 17x + 18\) [ ,\(x > 9\)]