Mr Daniels Maths
Solving Inequalities with negatives 2

Set 1

Set 2

Set 3

Q1) \(5x -3 > 3x + 9\) [ ,\(x > 6\)]

Q1) \(8x -16 > 15x + 19\) [ ,\(x <\) -5]

Q1) \(15x -14 > 10x + 16\) [ ,\(x > 6\)]

Q2) \(9x -17 > 5x + 15\) [ ,\(x > 8\)]

Q2) \(6x + 13 < 7x + 3\) [ ,\(x >\) 10]

Q2) \(3x + 14 > 4x + 12\) [ ,\(x <\) 2]

Q3) \(9x + 5 < 6x + 20\) [ ,\(x < 5\)]

Q3) \(4x + 20 > 5x + 5\) [ ,\(x <\) 15]

Q3) \(11x + 20 > 13x + 10\) [ ,\(x <\) 5]

Q4) \(5x -18 < 3x + 18\) [ ,\(x < 18\)]

Q4) \(6x -18 > 17x + 15\) [ ,\(x <\) -3]

Q4) \(13x + 6 < 11x + 16\) [ ,\(x < 5\)]

Q5) \(8x + 10 > 3x + 20\) [ ,\(x > 2\)]

Q5) \(5x + 16 > 7x + 4\) [ ,\(x <\) 6]

Q5) \(15x -13 < 13x + 5\) [ ,\(x < 9\)]

Q6) \(8x + 3 > 5x + 9\) [ ,\(x > 2\)]

Q6) \(2x -6 < 3x + 10\) [ ,\(x >\) -16]

Q6) \(12x + 8 > 13x + 19\) [ ,\(x <\) -11]

Q7) \(5x -17 > 3x + 17\) [ ,\(x > 17\)]

Q7) \(3x -4 < 4x + 2\) [ ,\(x >\) -6]

Q7) \(11x + 10 > 13x + 18\) [ ,\(x <\) -4]

Q8) \(6x -5 < 3x + 16\) [ ,\(x < 7\)]

Q8) \(3x + 16 < 6x + 13\) [ ,\(x >\) 1]

Q8) \(20x -9 > 17x + 18\) [ ,\(x > 9\)]

Q9) \(7x -13 > 5x + 9\) [ ,\(x > 11\)]

Q9) \(2x -4 < 13x + 18\) [ ,\(x >\) -2]

Q9) \(3x -5 > 10x + 2\) [ ,\(x <\) -1]

Q10) \(9x -4 > 4x + 11\) [ ,\(x > 3\)]

Q10) \(5x -19 < 18x + 20\) [ ,\(x >\) -3]

Q10) \(7x -7 > 2x + 18\) [ ,\(x > 5\)]