Mr Daniels Maths
Solving Quadratic Equations by Factorising

Set 1

Set 2

Set 3

Q1) \(x^2 + 15x + 54\) =0 [
\(x = -9\) or \(x = -6\)]

Q1) \(x^2 -2x + 1\)=0 [
\(x = 1\) or \( 1\)]

Q1) \(8 x^2 + 22x + 5 =0\) [ x = -2\(\frac{1}{2}\) or x =-\(\frac{1}{4}\)]

Q2) \(x^2 + 7x + 10\) =0 [
\(x = -5\) or \(x = -2\)]

Q2) \(x^2 + 5x + 6\)=0 [
\(x = -2\) or \( -3\)]

Q2) \(9 x^2 + 18x + 8 =0\) [ x = -1\(\frac{1}{3}\) or x =-\(\frac{2}{3}\)]

Q3) \(x^2 + 4x + 3\) =0 [
\(x = -1\) or \(x = -3\)]

Q3) \(x^2 + 3x -10\)=0 [
\(x = -5\) or \( 2\)]

Q3) \(8 x^2 + 22x + 9 =0\) [ x = -2\(\frac{1}{4}\) or x =-\(\frac{1}{2}\)]

Q4) \(x^2 + 8x + 16\) =0 [
\(x = -4\) or \(x = -4\)]

Q4) \(x^2 + 3x -4\)=0 [
\(x = -4\) or \( 1\)]

Q4) \(6 x^2 + 23x + 7 =0\) [ x = -3\(\frac{1}{2}\) or x =-\(\frac{1}{3}\)]

Q5) \(x^2 + 10x + 24\) =0 [
\(x = -6\) or \(x = -4\)]

Q5) \(x^2 + 3x -4\)=0 [
\(x = -4\) or \( 1\)]

Q5) \(4 x^2 + 16x + 7 =0\) [ x = -3\(\frac{1}{2}\) or x =-\(\frac{1}{2}\)]

Q6) \(x^2 + 9x + 14\) =0 [
\(x = -7\) or \(x = -2\)]

Q6) \(x^2 -5x + 6\)=0 [
\(x = 2\) or \( 3\)]

Q6) \(8 x^2 + 38x + 9 =0\) [ x = -4\(\frac{1}{2}\) or x =-\(\frac{1}{4}\)]

Q7) \(x^2 + 11x + 24\) =0 [
\(x = -8\) or \(x = -3\)]

Q7) \(x^2 + 2x -3\)=0 [
\(x = 1\) or \( -3\)]

Q7) \(8 x^2 + 14x + 3 =0\) [ x = -1\(\frac{1}{2}\) or x =-\(\frac{1}{4}\)]

Q8) \(x^2 + 10x + 16\) =0 [
\(x = -2\) or \(x = -8\)]

Q8) \(x^2 + x -20\)=0 [
\(x = 4\) or \( -5\)]

Q8) \(6 x^2 + 25x + 14 =0\) [ x = -3\(\frac{1}{2}\) or x =-\(\frac{2}{3}\)]

Q9) \(x^2 + 12x + 20\) =0 [
\(x = -2\) or \(x = -10\)]

Q9) \(x^2 + x -20\)=0 [
\(x = -5\) or \( 4\)]

Q9) \(6 x^2 + 23x + 10 =0\) [ x = -3\(\frac{1}{3}\) or x =-\(\frac{1}{2}\)]

Q10) \(x^2 + 11x + 30\) =0 [
\(x = -5\) or \(x = -6\)]

Q10) \(x^2 + 2x -15\)=0 [
\(x = -5\) or \( 3\)]

Q10) \(6 x^2 + 19x + 15 =0\) [ x = -1\(\frac{2}{3}\) or x =-1\(\frac{1}{2}\)]