Q1) \(5 ( 3 + \sqrt { 2 } )= \) [ \(15 + \) \(5\sqrt{2}\)]
Q1) \( \sqrt { 2 } ( 4 + \sqrt { 2 } )= \) [ \(4\sqrt{2}\) + \(2\) ]
Q1) \((3 + \sqrt2)(2+ \sqrt5 ) \) [ 6+\(3\sqrt{5}\)+\(2\sqrt{2}\)+\(\sqrt{10}\)]
Q2) \(4 ( 5 + \sqrt { 8 } )= \) [ \(20 + \) \(8\sqrt{2}\)]
Q2) \( \sqrt { 2 } ( 2 + \sqrt { 2 } )= \) [ \(2\sqrt{2}\) + \(2\) ]
Q2) \((5 + \sqrt14)(5+ \sqrt12 ) \) [ 25+\(10\sqrt{3}\)+\(5\sqrt{14}\)+\(2\sqrt{42}\)]
Q3) \(5 ( 3 + \sqrt { 15 } )= \) [ \(15 + \) \(5\sqrt{15}\)]
Q3) \( \sqrt { 5 } ( 5 + \sqrt { 11 } )= \) [ \(5\sqrt{5}\) + \(\sqrt{55}\) ]
Q3) \((1 + \sqrt2)(3+ \sqrt2 ) \) [ 5+\(4\sqrt{2}\)]
Q4) \(4 ( 2 + \sqrt { 2 } )= \) [ \(8 + \) \(4\sqrt{2}\)]
Q4) \( \sqrt { 5 } ( 1 + \sqrt { 3 } )= \) [ \(\sqrt{5}\) + \(\sqrt{15}\) ]
Q4) \((2 + \sqrt8)(5+ \sqrt8 ) \) [ 18+\(14\sqrt{2}\)]
Q5) \(3 ( 2 + \sqrt { 2 } )= \) [ \(6 + \) \(3\sqrt{2}\)]
Q5) \( \sqrt { 2 } ( 1 + \sqrt { 2 } )= \) [ \(\sqrt{2}\) + \(2\) ]
Q5) \((4 + \sqrt11)(4+ \sqrt12 ) \) [ 16+\(8\sqrt{3}\)+\(4\sqrt{11}\)+\(2\sqrt{33}\)]
Q6) \(4 ( 3 + \sqrt { 12 } )= \) [ \(12 + \) \(8\sqrt{3}\)]
Q6) \( \sqrt { 5 } ( 5 + \sqrt { 23 } )= \) [ \(5\sqrt{5}\) + \(\sqrt{115}\) ]
Q6) \((5 + \sqrt8)(3+ \sqrt10 ) \) [ 15+\(5\sqrt{10}\)+\(6\sqrt{2}\)+\(4\sqrt{5}\)]
Q7) \(3 ( 3 + \sqrt { 5 } )= \) [ \(9 + \) \(3\sqrt{5}\)]
Q7) \( \sqrt { 2 } ( 1 + \sqrt { 2 } )= \) [ \(\sqrt{2}\) + \(2\) ]
Q7) \((5 + \sqrt14)(4+ \sqrt15 ) \) [ 20+\(5\sqrt{15}\)+\(4\sqrt{14}\)+\(\sqrt{210}\)]
Q8) \(5 ( 3 + \sqrt { 14 } )= \) [ \(15 + \) \(5\sqrt{14}\)]
Q8) \( \sqrt { 5 } ( 2 + \sqrt { 7 } )= \) [ \(2\sqrt{5}\) + \(\sqrt{35}\) ]
Q8) \((3 + \sqrt5)(3+ \sqrt2 ) \) [ 9+\(3\sqrt{2}\)+\(3\sqrt{5}\)+\(\sqrt{10}\)]
Q9) \(3 ( 1 + \sqrt { 3 } )= \) [ \(3 + \) \(3\sqrt{3}\)]
Q9) \( \sqrt { 5 } ( 1 + \sqrt { 5 } )= \) [ \(\sqrt{5}\) + \(5\) ]
Q9) \((1 + \sqrt2)(4+ \sqrt2 ) \) [ 6+\(5\sqrt{2}\)]
Q10) \(2 ( 4 + \sqrt { 8 } )= \) [ \(8 + \) \(4\sqrt{2}\)]
Q10) \( \sqrt { 3 } ( 4 + \sqrt { 5 } )= \) [ \(4\sqrt{3}\) + \(\sqrt{15}\) ]
Q10) \((1 + \sqrt3)(3+ \sqrt3 ) \) [ 6+\(4\sqrt{3}\)]