Q1) \(4 ( 1 + \sqrt { 3 } )= \) [ \(4 + \) \(4\sqrt{3}\)]
Q1) \( \sqrt { 5 } ( 3 + \sqrt { 8 } )= \) [ \(3\sqrt{5}\) + \(2\sqrt{10}\) ]
Q1) \((3 + \sqrt3)(1+ \sqrt2 ) \) [ 3+\(3\sqrt{2}\)+\(\sqrt{3}\)+\(\sqrt{6}\)]
Q2) \(4 ( 5 + \sqrt { 8 } )= \) [ \(20 + \) \(8\sqrt{2}\)]
Q2) \( \sqrt { 2 } ( 4 + \sqrt { 2 } )= \) [ \(4\sqrt{2}\) + \(2\) ]
Q2) \((3 + \sqrt7)(4+ \sqrt11 ) \) [ 12+\(3\sqrt{11}\)+\(4\sqrt{7}\)+\(\sqrt{77}\)]
Q3) \(3 ( 1 + \sqrt { 3 } )= \) [ \(3 + \) \(3\sqrt{3}\)]
Q3) \( \sqrt { 2 } ( 3 + \sqrt { 2 } )= \) [ \(3\sqrt{2}\) + \(2\) ]
Q3) \((3 + \sqrt2)(2+ \sqrt5 ) \) [ 6+\(3\sqrt{5}\)+\(2\sqrt{2}\)+\(\sqrt{10}\)]
Q4) \(5 ( 4 + \sqrt { 17 } )= \) [ \(20 + \) \(5\sqrt{17}\)]
Q4) \( \sqrt { 4 } ( 4 + \sqrt { 13 } )= \) [ \(8\) + \(2\sqrt{13}\) ]
Q4) \((5 + \sqrt14)(5+ \sqrt12 ) \) [ 25+\(10\sqrt{3}\)+\(5\sqrt{14}\)+\(2\sqrt{42}\)]
Q5) \(4 ( 2 + \sqrt { 2 } )= \) [ \(8 + \) \(4\sqrt{2}\)]
Q5) \( \sqrt { 2 } ( 2 + \sqrt { 3 } )= \) [ \(2\sqrt{2}\) + \(\sqrt{6}\) ]
Q5) \((2 + \sqrt3)(3+ \sqrt6 ) \) [ 6+\(2\sqrt{6}\)+\(3\sqrt{3}\)+\(3\sqrt{2}\)]
Q6) \(3 ( 4 + \sqrt { 3 } )= \) [ \(12 + \) \(3\sqrt{3}\)]
Q6) \( \sqrt { 5 } ( 1 + \sqrt { 5 } )= \) [ \(\sqrt{5}\) + \(5\) ]
Q6) \((5 + \sqrt12)(5+ \sqrt7 ) \) [ 25+\(5\sqrt{7}\)+\(10\sqrt{3}\)+\(2\sqrt{21}\)]
Q7) \(4 ( 3 + \sqrt { 2 } )= \) [ \(12 + \) \(4\sqrt{2}\)]
Q7) \( \sqrt { 5 } ( 1 + \sqrt { 5 } )= \) [ \(\sqrt{5}\) + \(5\) ]
Q7) \((4 + \sqrt5)(2+ \sqrt5 ) \) [ 13+\(6\sqrt{5}\)]
Q8) \(4 ( 2 + \sqrt { 5 } )= \) [ \(8 + \) \(4\sqrt{5}\)]
Q8) \( \sqrt { 2 } ( 1 + \sqrt { 2 } )= \) [ \(\sqrt{2}\) + \(2\) ]
Q8) \((3 + \sqrt2)(1+ \sqrt2 ) \) [ 5+\(4\sqrt{2}\)]
Q9) \(2 ( 4 + \sqrt { 7 } )= \) [ \(8 + \) \(2\sqrt{7}\)]
Q9) \( \sqrt { 3 } ( 1 + \sqrt { 2 } )= \) [ \(\sqrt{3}\) + \(\sqrt{6}\) ]
Q9) \((2 + \sqrt3)(3+ \sqrt3 ) \) [ 9+\(5\sqrt{3}\)]
Q10) \(5 ( 5 + \sqrt { 12 } )= \) [ \(25 + \) \(10\sqrt{3}\)]
Q10) \( \sqrt { 4 } ( 3 + \sqrt { 3 } )= \) [ \(6\) + \(2\sqrt{3}\) ]
Q10) \((5 + \sqrt2)(1+ \sqrt5 ) \) [ 5+\(5\sqrt{5}\)+\(\sqrt{2}\)+\(\sqrt{10}\)]