Mr Daniels Maths
Surds:Division

Set 1

Set 2

Set 3

Q1) \(\sqrt 40 \over{ \sqrt{ 5}} \) = [ \(2\sqrt{2}\)]

Q1) \(5 \sqrt 21 \over{ \sqrt 7} \) = [ \(5\sqrt{3}\)]

Q1) \(6 \sqrt 25 \over{ 2 \sqrt 5} \) = [ \(3\sqrt{5}\)]

Q2) \(\sqrt 81 \over{ \sqrt{ 9}} \) = [ \(3\)]

Q2) \(2 \sqrt 16 \over{ \sqrt 4} \) = [ \(4\)]

Q2) \(16 \sqrt 8 \over{ 4 \sqrt 2} \) = [ \(8\)]

Q3) \(\sqrt 49 \over{ \sqrt{ 7}} \) = [ \(\sqrt{7}\)]

Q3) \(4 \sqrt 20 \over{ \sqrt 5} \) = [ \(8\)]

Q3) \(9 \sqrt 9 \over{ 3 \sqrt 3} \) = [ \(3\sqrt{3}\)]

Q4) \(\sqrt 24 \over{ \sqrt{ 8}} \) = [ \(\sqrt{3}\)]

Q4) \(4 \sqrt 16 \over{ \sqrt 2} \) = [ \(8\sqrt{2}\)]

Q4) \(6 \sqrt 1 \over{ 2 \sqrt 1} \) = [ \(3\)]

Q5) \(\sqrt 100 \over{ \sqrt{ 10}} \) = [ \(\sqrt{10}\)]

Q5) \(4 \sqrt 36 \over{ \sqrt 6} \) = [ \(4\sqrt{6}\)]

Q5) \(20 \sqrt 3 \over{ 4 \sqrt 1} \) = [ \(5\sqrt{3}\)]

Q6) \(\sqrt 60 \over{ \sqrt{ 10}} \) = [ \(\sqrt{6}\)]

Q6) \(2 \sqrt 50 \over{ \sqrt 5} \) = [ \(2\sqrt{10}\)]

Q6) \(6 \sqrt 16 \over{ 2 \sqrt 4} \) = [ \(6\)]

Q7) \(\sqrt 63 \over{ \sqrt{ 9}} \) = [ \(\sqrt{7}\)]

Q7) \(5 \sqrt 8 \over{ \sqrt 4} \) = [ \(5\sqrt{2}\)]

Q7) \(10 \sqrt 1 \over{ 2 \sqrt 1} \) = [ \(5\)]

Q8) \(\sqrt 18 \over{ \sqrt{ 3}} \) = [ \(\sqrt{6}\)]

Q8) \(2 \sqrt 54 \over{ \sqrt 9} \) = [ \(2\sqrt{6}\)]

Q8) \(25 \sqrt 25 \over{ 5 \sqrt 5} \) = [ \(5\sqrt{5}\)]

Q9) \(\sqrt 50 \over{ \sqrt{ 5}} \) = [ \(\sqrt{10}\)]

Q9) \(2 \sqrt 9 \over{ \sqrt 9} \) = [ \(2\)]

Q9) \(6 \sqrt 5 \over{ 2 \sqrt 1} \) = [ \(3\sqrt{5}\)]

Q10) \(\sqrt 9 \over{ \sqrt{ 1}} \) = [ \(3\)]

Q10) \(2 \sqrt 24 \over{ \sqrt 8} \) = [ \(2\sqrt{3}\)]

Q10) \(6 \sqrt 25 \over{ 3 \sqrt 5} \) = [ \(2\sqrt{5}\)]