Mr Daniels Maths
Surds:Division

Set 1

Set 2

Set 3

Q1) \(\sqrt 72 \over{ \sqrt{ 8}} \) = [ \(3\)]

Q1) \(5 \sqrt 6 \over{ \sqrt 6} \) = [ \(5\)]

Q1) \(9 \sqrt 6 \over{ 3 \sqrt 2} \) = [ \(3\sqrt{3}\)]

Q2) \(\sqrt 36 \over{ \sqrt{ 4}} \) = [ \(3\)]

Q2) \(2 \sqrt 30 \over{ \sqrt 3} \) = [ \(2\sqrt{10}\)]

Q2) \(10 \sqrt 15 \over{ 2 \sqrt 3} \) = [ \(5\sqrt{5}\)]

Q3) \(\sqrt 12 \over{ \sqrt{ 6}} \) = [ \(\sqrt{2}\)]

Q3) \(3 \sqrt 63 \over{ \sqrt 7} \) = [ \(9\)]

Q3) \(25 \sqrt 6 \over{ 5 \sqrt 3} \) = [ \(5\sqrt{2}\)]

Q4) \(\sqrt 15 \over{ \sqrt{ 3}} \) = [ \(\sqrt{5}\)]

Q4) \(4 \sqrt 49 \over{ \sqrt 7} \) = [ \(4\sqrt{7}\)]

Q4) \(25 \sqrt 6 \over{ 5 \sqrt 2} \) = [ \(5\sqrt{3}\)]

Q5) \(\sqrt 20 \over{ \sqrt{ 5}} \) = [ \(2\)]

Q5) \(5 \sqrt 25 \over{ \sqrt 5} \) = [ \(5\sqrt{5}\)]

Q5) \(6 \sqrt 15 \over{ 2 \sqrt 3} \) = [ \(3\sqrt{5}\)]

Q6) \(\sqrt 4 \over{ \sqrt{ 1}} \) = [ \(2\)]

Q6) \(4 \sqrt 24 \over{ \sqrt 8} \) = [ \(4\sqrt{3}\)]

Q6) \(25 \sqrt 12 \over{ 5 \sqrt 3} \) = [ \(10\)]

Q7) \(\sqrt 5 \over{ \sqrt{ 1}} \) = [ \(\sqrt{5}\)]

Q7) \(2 \sqrt 27 \over{ \sqrt 3} \) = [ \(6\)]

Q7) \(15 \sqrt 15 \over{ 3 \sqrt 3} \) = [ \(5\sqrt{5}\)]

Q8) \(\sqrt 60 \over{ \sqrt{ 10}} \) = [ \(\sqrt{6}\)]

Q8) \(4 \sqrt 18 \over{ \sqrt 9} \) = [ \(4\sqrt{2}\)]

Q8) \(12 \sqrt 20 \over{ 3 \sqrt 4} \) = [ \(4\sqrt{5}\)]

Q9) \(\sqrt 36 \over{ \sqrt{ 6}} \) = [ \(\sqrt{6}\)]

Q9) \(3 \sqrt 7 \over{ \sqrt 1} \) = [ \(3\sqrt{7}\)]

Q9) \(8 \sqrt 15 \over{ 2 \sqrt 5} \) = [ \(4\sqrt{3}\)]

Q10) \(\sqrt 45 \over{ \sqrt{ 5}} \) = [ \(3\)]

Q10) \(5 \sqrt 24 \over{ \sqrt 3} \) = [ \(10\sqrt{2}\)]

Q10) \(25 \sqrt 4 \over{ 5 \sqrt 2} \) = [ \(5\sqrt{2}\)]