Mr Daniels Maths
Surds Multiplying

Set 1

Set 2

Set 3

Q1) \(\sqrt 4\) x \( \sqrt 1= \) [ \(2\)]

Q1) \(3\sqrt 5 \) x \(\sqrt 2= \) [ \(3\sqrt{10}\)]

Q1) \(4\sqrt 3 \) x \(3\sqrt 5= \) [ \(12\sqrt{15}\)]

Q2) \(\sqrt 3\) x \( \sqrt 3= \) [ \(3\)]

Q2) \(2\sqrt 10 \) x \(\sqrt 7= \) [ \(2\sqrt{70}\)]

Q2) \(4\sqrt 2 \) x \(2\sqrt 3= \) [ \(8\sqrt{6}\)]

Q3) \(\sqrt 6\) x \( \sqrt 4= \) [ \(2\sqrt{6}\)]

Q3) \(5\sqrt 8 \) x \(\sqrt 4= \) [ \(20\sqrt{2}\)]

Q3) \(3\sqrt 1 \) x \(3\sqrt 1= \) [ \(9\)]

Q4) \(\sqrt 5\) x \( \sqrt 1= \) [ \(\sqrt{5}\)]

Q4) \(5\sqrt 3 \) x \(\sqrt 3= \) [ \(15\)]

Q4) \(3\sqrt 3 \) x \(3\sqrt 3= \) [ \(27\)]

Q5) \(\sqrt 9\) x \( \sqrt 9= \) [ \(9\)]

Q5) \(3\sqrt 9 \) x \(\sqrt 3= \) [ \(9\sqrt{3}\)]

Q5) \(3\sqrt 1 \) x \(5\sqrt 5= \) [ \(15\sqrt{5}\)]

Q6) \(\sqrt 9\) x \( \sqrt 4= \) [ \(6\)]

Q6) \(3\sqrt 3 \) x \(\sqrt 2= \) [ \(3\sqrt{6}\)]

Q6) \(2\sqrt 1 \) x \(4\sqrt 5= \) [ \(8\sqrt{5}\)]

Q7) \(\sqrt 4\) x \( \sqrt 4= \) [ \(4\)]

Q7) \(2\sqrt 3 \) x \(\sqrt 6= \) [ \(6\sqrt{2}\)]

Q7) \(4\sqrt 3 \) x \(2\sqrt 1= \) [ \(8\sqrt{3}\)]

Q8) \(\sqrt 4\) x \( \sqrt 6= \) [ \(2\sqrt{6}\)]

Q8) \(4\sqrt 9 \) x \(\sqrt 1= \) [ \(12\)]

Q8) \(2\sqrt 2 \) x \(2\sqrt 3= \) [ \(4\sqrt{6}\)]

Q9) \(\sqrt 5\) x \( \sqrt 8= \) [ \(2\sqrt{10}\)]

Q9) \(5\sqrt 9 \) x \(\sqrt 5= \) [ \(15\sqrt{5}\)]

Q9) \(2\sqrt 4 \) x \(2\sqrt 5= \) [ \(8\sqrt{5}\)]

Q10) \(\sqrt 9\) x \( \sqrt 7= \) [ \(3\sqrt{7}\)]

Q10) \(3\sqrt 4 \) x \(\sqrt 6= \) [ \(6\sqrt{6}\)]

Q10) \(2\sqrt 2 \) x \(5\sqrt 2= \) [ \(20\)]