Mr Daniels Maths
Surds Simplifying

Set 1

Set 2

Set 3

Q1) \(\sqrt{128}\) = [ \(8\sqrt{2}\)]

Q1) \(9 \sqrt 30 \over{ 3 \sqrt 3} \) = [ \(3\sqrt{10}\)]

Q1) \(\sqrt { 192 } \) - \(\sqrt { 12 }= \) [ \(6\sqrt{3}\)]

Q2) \(\sqrt{360}\) = [ \(6\sqrt{10}\)]

Q2) \(15 \sqrt 21 \over{ 5 \sqrt 7} \) = [ \(3\sqrt{3}\)]

Q2) \(\sqrt { 98 } \) + \(\sqrt { 200 }= \) [ \(17\sqrt{2}\)]

Q3) \(\sqrt{18}\) = [ \(3\sqrt{2}\)]

Q3) \(16 \sqrt 70 \over{ 4 \sqrt 10} \) = [ \(4\sqrt{7}\)]

Q3) \(\sqrt { 300 } \) + \(\sqrt { 243 }= \) [ \(19\sqrt{3}\)]

Q4) \(\sqrt{200}\) = [ \(10\sqrt{2}\)]

Q4) \(25 \sqrt 18 \over{ 5 \sqrt 3} \) = [ \(5\sqrt{6}\)]

Q4) \(\sqrt { 180 } \) - \(\sqrt { 80 }= \) [ \(2\sqrt{5}\)]

Q5) \(\sqrt{40}\) = [ \(2\sqrt{10}\)]

Q5) \(4 \sqrt 40 \over{ 2 \sqrt 10} \) = [ \(4\)]

Q5) \(\sqrt { 72 } \) + \(\sqrt { 98 }= \) [ \(13\sqrt{2}\)]

Q6) \(\sqrt{27}\) = [ \(3\sqrt{3}\)]

Q6) \(20 \sqrt 14 \over{ 5 \sqrt 7} \) = [ \(4\sqrt{2}\)]

Q6) \(\sqrt { 50 } \) + \(\sqrt { 128 }= \) [ \(13\sqrt{2}\)]

Q7) \(\sqrt{50}\) = [ \(5\sqrt{2}\)]

Q7) \(2\sqrt 1 \) x \(4\sqrt 10= \) [ \(8\sqrt{10}\)]

Q7) \(\sqrt { 98 } \) - \(\sqrt { 32 }= \) [ \(3\sqrt{2}\)]

Q8) \(\sqrt{252}\) = [ \(6\sqrt{7}\)]

Q8) \(3\sqrt 5 \) x \(3\sqrt 4= \) [ \(18\sqrt{5}\)]

Q8) \(\sqrt { 80 } \) + \(\sqrt { 80 }= \) [ \(8\sqrt{5}\)]

Q9) \(\sqrt{108}\) = [ \(6\sqrt{3}\)]

Q9) \(4\sqrt 2 \) x \(3\sqrt 7= \) [ \(12\sqrt{14}\)]

Q9) \(\sqrt { 180 } \) + \(\sqrt { 5 }= \) [ \(7\sqrt{5}\)]

Q10) \(\sqrt{80}\) = [ \(4\sqrt{5}\)]

Q10) \(10 \sqrt 20 \over{ 2 \sqrt 10} \) = [ \(5\sqrt{2}\)]

Q10) \(\sqrt { 128 } \) + \(\sqrt { 50 }= \) [ \(13\sqrt{2}\)]