Mr Daniels Maths
Surds Simplifying

Set 1

Set 2

Set 3

Q1) \(\sqrt{45}\) = [ \(3\sqrt{5}\)]

Q1) \(2\sqrt 9 \) x \(5\sqrt 6= \) [ \(30\sqrt{6}\)]

Q1) \(\sqrt { 75 } \) + \(\sqrt { 300 }= \) [ \(15\sqrt{3}\)]

Q2) \(\sqrt{27}\) = [ \(3\sqrt{3}\)]

Q2) \(3\sqrt 4 \) x \(5\sqrt 9= \) [ \(90\)]

Q2) \(\sqrt { 162 } \) - \(\sqrt { 32 }= \) [ \(5\sqrt{2}\)]

Q3) \(\sqrt{8}\) = [ \(2\sqrt{2}\)]

Q3) \(10 \sqrt 28 \over{ 2 \sqrt 7} \) = [ \(10\)]

Q3) \(\sqrt { 108 } \) - \(\sqrt { 27 }= \) [ \(3\sqrt{3}\)]

Q4) \(\sqrt{28}\) = [ \(2\sqrt{7}\)]

Q4) \(5\sqrt 2 \) x \(3\sqrt 6= \) [ \(30\sqrt{3}\)]

Q4) \(\sqrt { 162 } \) - \(\sqrt { 50 }= \) [ \(4\sqrt{2}\)]

Q5) \(\sqrt{250}\) = [ \(5\sqrt{10}\)]

Q5) \(4 \sqrt 80 \over{ 2 \sqrt 8} \) = [ \(2\sqrt{10}\)]

Q5) \(\sqrt { 180 } \) + \(\sqrt { 125 }= \) [ \(11\sqrt{5}\)]

Q6) \(\sqrt{20}\) = [ \(2\sqrt{5}\)]

Q6) \(20 \sqrt 27 \over{ 4 \sqrt 9} \) = [ \(5\sqrt{3}\)]

Q6) \(\sqrt { 72 } \) + \(\sqrt { 32 }= \) [ \(10\sqrt{2}\)]

Q7) \(\sqrt{50}\) = [ \(5\sqrt{2}\)]

Q7) \(2\sqrt 3 \) x \(5\sqrt 3= \) [ \(30\)]

Q7) \(\sqrt { 45 } \) + \(\sqrt { 45 }= \) [ \(6\sqrt{5}\)]

Q8) \(\sqrt{160}\) = [ \(4\sqrt{10}\)]

Q8) \(15 \sqrt 28 \over{ 5 \sqrt 4} \) = [ \(3\sqrt{7}\)]

Q8) \(\sqrt { 192 } \) - \(\sqrt { 12 }= \) [ \(6\sqrt{3}\)]

Q9) \(\sqrt{54}\) = [ \(3\sqrt{6}\)]

Q9) \(20 \sqrt 15 \over{ 5 \sqrt 3} \) = [ \(4\sqrt{5}\)]

Q9) \(\sqrt { 500 } \) + \(\sqrt { 180 }= \) [ \(16\sqrt{5}\)]

Q10) \(\sqrt{200}\) = [ \(10\sqrt{2}\)]

Q10) \(2\sqrt 6 \) x \(4\sqrt 4= \) [ \(16\sqrt{6}\)]

Q10) \(\sqrt { 20 } \) + \(\sqrt { 245 }= \) [ \(9\sqrt{5}\)]